
AN INVESTIGATION OF OPTIMAL PROJECT SCHEDULING

AND TEAM STAFFING IN SOFTWARE DEVELOPMENT USING

PARTICLE SWARM OPTIMIZATION

Simos Gerasimou
1
, Constantinos Stylianou

2
 and Andreas S. Andreou

1

1Department of Computer Engineering and Informatics,Cyprus University of Technology,

31 Archbishop Kyprianou Ave., P.O. Box 50329, Lemesos, 3036, Cyprus
2Department of Computer Science, University of Cyprus,

75 Kallipoleos Ave., P.O. Box 20537, Lefkosia, 1678, Cyprus

{simos.gerasimou, andreas.andreou}@cut.ac.cy, c.stylianou@cs.ucy.ac.cy

Keywords: Software Project Management; Project Scheduling; Team Staffing; Particle Swarm Optimization.

Abstract: Software development organizations often struggle to deliver projects on time, within budget and with the

required quality. One possible cause of this problem is poor software project management and, in particular,

inadequate project scheduling and ineffective team staffing. This paper investigates the application of a

particle swarm optimization algorithm to help software project managers perform these activities

effectively. Specifically, the proposed approach aims to create optimal project schedules by specifying the

best sequence for executing a project’s tasks and minimizing the total project duration. Simultaneously, it

seeks to form skilful and productive working teams with the best utilization of developer skills. These

considerations have been suitably encoded into the algorithm, with several hard constraints and objective

functions appropriately formulated so as to assess the generated solutions with respect to their feasibility

and also their quality. The initial results obtained are quite encouraging for the majority of the performed

tests and indicate that the proposed approach is able to deal with the issues of scheduling and staffing in

software project management.

1 INTRODUCTION

One of the serious problems concerning the majority

of software development organisations is the high

rate of software project failures. According to the

Standish Group’s CHAOS Report of 2009, only

32% of projects produced software systems that

were delivered successfully on time and within

budget and also provided the required features and

functionality (Standish Group, 2009). These figures,

give strong indications that software development

companies systematically fail to accurately plan and

properly measure their development processes, and

the reasons leading to low success rates have,

therefore, been the focal point of many software

engineering researchers.

Among the most significant causes attributed to

software project failures has been the insufficient

and inappropriate practices followed by software

project managers regarding project scheduling and

team staffing activities. In the former case, incorrect

estimates both before and during software

development have been found to play a crucial role

in software project delays and overruns, whereas in

the latter case, assigning project tasks to less suitable

project team members is one of the main causes of

low quality end-products.

The research presented in this paper is an initial

investigation to deal with these issues of software

project management through a swarm intelligence

approach that facilitates both the scheduling of

project tasks and the allocation of the most suitable

team members to tasks in an automated way.

Specifically, the approach targets two goals. Firstly,

to construct an optimal sequence of task executions

and to help minimize software project duration

without any violation of possible dependencies

existing between tasks. Secondly, to form an

efficient and operational software project team with

the best possible utilization of skills measured in

terms of developer experience.

2 RELATED WORK

There have been a number of approaches proposed

over the years that aim at helping software project

managers decide on various technical factors such as

project duration and effort as well as developer

availability, with most of the techniques proposed

tackling scheduling and staffing as an optimization

problem. Μany researchers have focused on using

techniques found in the area of computational

intelligence, as these have been proven to be

extremely efficient for solving real-world problems

that are large in size and high in complexity. The

most common techniques include evolutionary

algorithms (Alba and Chicano, 2007; Chang et al.,

2008; Ren, Harman and Di Penta, 2011), fuzzy logic

(Callegari and Bastos, 2009) and constraint

satisfaction (Barreto, Barros and Werner, 2008).

These have been adopted mainly due to their

abilities to reduce problem search spaces and to

model complex problems where there is a lack of

mathematical analysis, as well as to effectively

handle NP-hard problems (Chang et al., 2008).

The attempt presented here takes into account the

non-interchangeable nature of human resources and

aims to optimize assignments so that the level of

developer experience is fully utilized, thus

promoting quality software systems. Furthermore,

swarm intelligence is investigated as a means to

perform the optimization.

3 PROPOSED METHODOLOGY

3.1 Representation and Encoding

A software project comprises a number of tasks that

must be performed in a predetermined sequence,

with the dependencies between them satisfied at all

times. Each task has a specified duration and

requires developers to possess a set of skills in order

to perform it. It is a project manager’s responsibility

to construct the project and form the development

team and, in order to help project managers achieve

this, a particle swarm optimization (PSO) algorithm

was adopted. PSOs are a computational intelligence

technique inspired by biological evolution occurring

in nature (Eberhart and Kennedy, 1995). Swarm

particles denote a candidate solution to the problem,

and in this attempt the same representation defined

in Stylianou and Andreou (2011) is used. Each

particle’s dimension uses mixed-type encoding to

hold scheduling information and the assigned

developers. Scheduling information is expressed by

each task’s starting day and the team staffing

information is represented by a binary vector, where

each bit shows whether or not a developer has been

assigned to a task.

3.2 Particle Evaluation

The evaluation of each candidate solution is

assessed based on two factors, as shown in Eq. (1):

(a) the computation of the degree of satisfaction of

hard constraints and (b) the calculation of its fitness

using objective functions.

 () () () (1)

where () and () denote the

computed values regarding the hard constraints and

objective functions, respectively. The first factor is

used to assess the feasibility of a solution, whereas

the second factor shows its quality.

A candidate solution is considered feasible if and

only if it satisfies the imposed constraints, as shown

in Eqs (2)-(4). Each constraint contains a penalty

coefficient with a negative value in order to stress

the existence of a violation.

 ()

(2)

 ()

 (3)

 ()

 (4)

Constraint measures if there are violations of

task dependencies, since it is required that each

task’s starting day must be set after all of its

predecessors have completed. Constraint

measures if all skills required by a task are fulfilled

by the developers assigned, since if the team does

not possess one or more required skills then the task

will not complete successfully and defects could

occur. Constraint measures if conflicts arise when

developers are assigned to tasks, as they are not

permitted to work on more than one task at any

given time. The final constraint value of a particle is

the summation of the individual constraint terms.

The fitness of a solution is evaluated using the

two objective functions in Eqs (5) and (6). The

former considers the duration of the project and the

latter takes into account the experience of the

assigned developers.

Table 1: Software projects used to study the particle swarm optimization algorithm.

Project
Number of

Tasks

Number of

Dependencies (Rate)

Average Number of

Skills per Task

Number of

Available Developers

Average Number of

Skills per Developer

1 10 13 (29%) 2 10 2

2 14 16 (18%) 2 10 1.5

3 18 24 (16%) 2 10 1.2

4 18 24 (16%) 2 5 0.7

5 25 15 (5%) 2.5 8 1

6 30 62 (14%) 3.3 18 2

7 30 62 (14%) 3.3 10 1

∑ ()

 (5)

∑ (

∑ ()

)

(6)

The objective function aims to schedule

tasks so that there are no needless (idle) delays

within the project, thus minimizing its overall

duration. On the other hand, objective function

 aims to ensure that the teams will be the most

suitable for the accomplishment of each task, and

uses each assigned developer’s degree of experience

in the skills required. Since the two objectives are

directly competing, it is often likely that the

algorithm’s attempt to increase one objective would

cause the other to lower. Therefore, a trade-off

mechanism using weights for each objective

function, shown in Eq. (7), was implemented to

allow software project managers to decide which of

the two objectives is more significant for them.

 () ()

 ()
(7)

where and .

4 EXPERIMENTAL RESULTS

4.1 Design of Experiments

Initially, a survey was conducted with a number of

software development SMEs in Cyprus in order to

find out the driving factors influencing the size and

complexity of a software project. With the

information obtained, a total of 7 projects of varying

size and complexity were used aiming to represent

real-world software project case studies. The factors

taken into account and their respective values in

each project are provided in Table 1. Furthermore,

three different sets of ratios for the weight values

and (Eq. (7)) were used: equal importance (1:1),

importance to project scheduling (9:1) and

importance to developer experience (1:9).

4.2 Parameters and Execution

A combination of Constriction-PSO and Binary-PSO

(Poli, Kennedy and Blackwell, 2007) variations

were selected as the most suitable. Also, due to the

multimodal nature of the problem having many

global/local minimum, a low-connected ring

topology was used so the swarm could adequately

examine the search space and avoid premature

convergence in local optimal solutions. The swarm

size was kept constant at 60 particles and all 7

projects were executed 10 times for each weight

ratio variation, with a maximum 10
6
 number of

iterations. In case that stagnation was observed, a

partial re-initialization of positions and velocities

took place. Finally, the penalty values for the

constraints in Eqs. (2)-(4) were specified to -100.

4.3 Results and Discussion

As previously mentioned, the primary objective of

this research attempt is to carry out an initial

investigation as to whether the proposed approach

produces acceptable solutions within the context of

software project management. Therefore, each

particle in the swarm was assessed, firstly, based on

whether it represents a feasible software project

schedule and developer assignments and, secondly,

based on its ability to generate optimal solutions.

The results of the executions are presented in Table

2. For the first project, all the final particles at the

end of the algorithm’s executions represent feasible

solutions (since its feasibility rate equals 100%) and

in addition all of them are optimal solutions (with a

100% hit rate). As the complexity and size of the

software projects increase however, these

percentages begin to decrease. Despite this, the

algorithm always generates solutions that are

feasible (but not necessarily optimal) even in the

most complex and difficult project instances (i.e., 5

to 7). This indicates that the algorithm is highly

capable of constructing adequate solutions with

respect to the hard constraints imposed.

With respect to the quality of the produced

solutions, the hit ratios in Table 2 show that the

algorithm performs sufficiently well with the first

four projects for all weight ratio variations. Here, the

hit ratio percentages reach a maximum value of

100% in the first project but as the complexity

increases, a progressive decrease is observed

reaching as low as 30% in the fourth project. A

possible explanation for the behaviour of the

algorithm is that it encounters more difficulties when

trying to satisfy the constraints since, intuitively, the

fewer the number of available developers, the more

likely that assignment conflicts will arise. With

regards to projects 5 to 7, the algorithm experiences

some difficulties in finding optimal solutions,

despite being able to frequently generate feasible

solutions (within 80%-90% of the time). This can

suggest that the large increase in the complexity and

size of software projects causes difficulties in the

evolution of the algorithm and consequently to the

generation of optimal solutions.

5 CONCLUDING REMARKS

The results obtained from various executions of the

algorithm indicated that PSO is a promising

approach for software project scheduling and team

staffing, which performs sufficiently well in the

majority of the projects examined in this paper. The

average feasibility ratio of the solutions generated is

more than 83% proving that most of the particles in

a swarm reside in feasible search space area.

However, some difficulties were encountered in the

cases with larger-sized and more complex software

projects, where the number of tasks, the type of

dependencies and the number of available

developers were shown to influence the ability of the

algorithm to produce optimal solutions. Specifically

in certain instances, the existence of “needless” gaps

in project schedules was observed, despite satisfying

all constraints. In order to increase the quality of

solutions, an adjustment can be made to the

objective functions so that they can more adequately

handle gaps or by introducing new objective

functions that could assist the swarm during its

evolution. Furthermore, due to the obvious

conflicting nature of the present objective functions,

an implementation of a multi-objective version of

the algorithm may perhaps be able to produce better

results. These abovementioned adjustments are

scheduled for future work along with

experimentation with real software projects, which is

currently in process with the collaboration of local

software SMEs for the provision of data.

REFERENCES

Alba, E. and Chicano, J.F., 2007. Software project

management with GAs. Inform. Sciences, 177(11), pp.

2380-2401.

Barreto, A., Barros, M.d.O. and Werner, C.M.L., 2008.

Staffing a software project: A constraint satisfaction

and optimization-based approach. Comput. Oper. Res.,

35(10), pp. 3073-3089.

Callegari, D.A. and Bastos, R.M., 2009. A multi-criteria

resource selection method for software projects using

fuzzy logic. In 11th International Conference on

Enterprise Information Systems. Milan, Italy, 6-10

May 2009. Berlin, Germany: Springer-Verlag.

Chang, C.K., et al., 2008. Time-line based model for

software project scheduling with genetic algorithms.

Inform. Software Tech., 50(11), pp. 1142-1154.

Eberhart, R. and Kennedy, J., 1995. A new optimizer

using particle swarm theory. In 6th International

Symposium on Micro Machine and Human Science.

Nagoya, Japan, 4-6 October 1995. Piscataway, NJ,

USA: IEEE Industry Applications Society.

Poli R., Kennedy J., Blackwell T., 2007. Particle swarm

optimization: an overview. Swarm Intelligence, 1(1),

pp. 33–57.

Ren, J., Harman, M. and Di Penta, M., 2011. Cooperative

co-evolutionary optimization of software project staff

assignments and job scheduling. In International

Symposium on Search Based Software Engineering.

Szeged, Hungary, 10-12 September 2011. Berlin,

Germany: Springer-Verlag.

Standish Group, 2009. Standish Group CHAOS Report.

Boston, MA, USA: Standish Group International, Inc.

Stylianou, C and Andreou, S.A. 2011. Intelligent Software

Project Scheduling and Team Staffing with Genetic

Algorithms. In 7th IFIP Conference on Artificial

Intelligence Applications and Innovations, Corfu,

Greece, 15-18 September 2011, Berlin, Germany:

Springer-Verlag.

Table 2: Average feasibility and hit ratio percentages for each project for each weight ratio variation

Weight

Ratios

Average Feasibility Rate (%) | Hit Ratio (%)

1 2 3 4 5 6 7

1:1 100 | 100 99.1 | 30.0 97.9 | 50.0 96.6 | 30.0 89.0 | 0.0 88.2 | 0.0 85.0 | 0.0

9:1 100 | 100 99.6 | 50.0 97.8 | 40.0 95.6 | 30.0 88.8 | 0.0 87.3 | 0.0 83.8 | 0.0

1:9 100 | 100 98.0 | 90.0 96.0 | 80.0 95.0 | 70.0 90.0 | 0.0 89.0 | 0.0 87.0 | 0.0

