
1

Deliverable D4.5

Survey paper / Technical report on DevOps Automation

and Software Service Composition

DOSSIER-Cloud

DEVOPS-BASED SOFTWARE ENGINEERING FOR THE CLOUD

http://www.dossier-cloud.eu

2

Document details:

Editor : Lambros Odysseos

Contributors :
Andreas Andreou, Andreas Christoforou, Luciano Baresi,
Mike Papazoglou, Damian Tamburri

Date: August 2018

Version: 7.0

Document history:

Version Date Contributor Comments

1.0 21/06/18 Lambros Odysseos Initial document, structure and content

2.0 05/07/18 Lambros Odysseos First draft

3.0 10/07/18 Andreas Chistoforou Corrections, second draft

4.0 16/07/18
Luciano Baresi,

Damian Tamburri,
Andreas Andreou

Corrections, third draft

5.0 23/07/18 Andreas Chistoforou Corrections, fourth draft

6.0 28/07/18 Andreas Andreou Corrections. Final review for approval

7.0 03/08/18
Luciano Baresi,

Mike Papazoglou
Approved final version

3

Contents

1. Introduction ... 4

2. Survey Methodology ... 5

3. Literature Review .. 7

3.1. Which and how automated procedures support DevOps practices? 8

3.2. Which automation tools are being used to support DevOps teams? 9

3.3. Which are the most important services characteristics that affect automatic services

synthesis? .. 14

3.4. What is the level of services synthesis automation? ... 17

4. Conclusions ... 18

5. References .. 19

4

1. Introduction

Targeting at faster application delivery and born from agile methodologies, the adoption of the

DevOps approach has recently started to grow in software development and operation

processes. Among various process tasks like testing, deployment, reconfiguration, etc., the

DevOps approach favors a new culture between development and operations teams aiming to

achieve a closer collaboration and communication without silos and barriers between these

teams, and to emphasize automation and sharing.

DevOps describes the main stakeholders of producing and supporting a distributed software

service or application that possess a mixture of code skills and system operation skills [1]. Authors

in [2] state that DevOps consists of four dimensions: Culture, automation, measurement and

sharing. Culture mainly refers to organizational structure and the corresponding new processes

to support collaboration; it also takes into consideration the efficient management of human

resources in activities such as team staffing. Automation of practices is the goal behind the

support of new adopted tools and processes. Measurement in DevOps is defined as “monitoring

high-level business metrics such as revenue or end-to-end transactions per unit time”. Metrics at

a lower level are important for measuring the delivery process, as well as the way people work.

Sharing is an essential component towards knowledge and control spreading across teams.

Many organizations migrated from the agile software development approach to the DevOps

approach. It is proved that DevOps is much more effective and productive than other

development methodologies, although there are many variations as its application to different

organizations varies. As DevOps is widely spreading [3], there is a strong need for automating

certain processes or tasks.

By automating DevOps activities, we ensure the continuous delivery of new pieces of software in

the application and bug fixing [4]. The most vital key point for achieving DevOps automation is

simply human communication and collaboration. To this end, certain tools are used to ensure

best practices, including those used to aid processes primarily for Building, Testing, Monitoring,

Collaboration, Source Control Management, and Database Management. Considering human

communication as one of the fundamental the building blocks of DevOps automation, a series of

tools are available and can be used to ensure better productivity outcomes in Software

Engineering.

DevOps is usually tightly connected to a new Software Engineering trend, software service

composition. Service composition is derived from Service-Oriented Architecture (SOA) [5] and

Microservices Architecture (MSA), [6], which both rely on services as the main component but

vary in terms of service characteristics. In this survey we mainly deal with services that consist of

smaller functional software components that are available and exposed over the cloud and

support specific business operations. From this point forward and for the remainder of the

survey, reference to services will also imply microservices as nowadays the two terms are

indistinguishable.

5

Service composition relies on locating and combining small functional pieces called services and

reinforces the automatic software development under the DevOps methodology. In order to

achieve that a series of tasks should be followed in order to locate the available services, define

the candidate (suitable) ones and finally select those that, when combined together, lead to the

closest matching of the functional and non-functional requirements. The final step of this process

is to integrate the matching services by combining them together through a commonly decided

API and communication gateway.

Although this combination may seem irrelevant, it actually supports the DevOps automation

process and affects Software Engineering in a positive manner. To be more specific, it affects

Software Engineering simply because the development approach is different. As regards how the

DevOps process is automated, the latter relies primarily on the fact that service composition

comprises a number of critical tasks than may be automated apart from software building, like

communication, coordination, monitoring, problem solving, deployment etc.

As DevOps is not a de-facto approach, a series of research questions were set from the beginning

of this study, which may clarify many things regarding what DevOps actually is, how it can be

automated and, finally, how it can be combined with one of the latest software development

approaches, that is, software service composition. This deliverable presents an empirical study

that outlines the significant concepts of the relevant scientific knowledge through four research

questions. In order to provide answers to these research questions, a series of articles from

various data sources were gathered, examined and analyzed. More information about how this

study was conducted is provided in Section 2 which describes the survey methodology. Section 3

follows with the findings from the relevant literature review, while Section 4 concludes this

survey.

2. Survey Methodology

The four research questions that motivated this study are the following:

RQ1: Which and how automated procedures support DevOps practices?

RQ2: Which automation tools are being used to support DevOps teams?

RQ3: Which are the most important service characteristics that affect automatic service

synthesis?

RQ4: What is the level of services synthesis automation?

6

We may differentiate between two categories in the questions above; the first category is related

to the automation procedures and tools that support DevOps (RQ1, RQ2), while the second

focuses on a specific way of developing software services and systems under DevOps (RQ3, RQ4).

In order to give answers to the aforementioned research questions and complete this literature

review, we collected and studied various publications and articles from different data sources

and digital libraries like IEEE Xplore, ACM Digital Library, Google Scholar etc. Also, some other

data sources were accessed like websites, previous survey papers etc. The way this investigation

was approached was by searching within the selected sources for articles relevant to specific

keywords like “DevOps”, “DevOps automation”, “Microservices”, “Service Synthesis”, “Service

Ontology”, “Microservice properties”, “Microservice attributes” etc. Through a qualitative

analysis and assessment of the papers that emerged from this research, we have managed to

collect 48 papers in total. Some papers were completely discarded from our research pool

because they were out of scope. A few papers were partly considered as they were relevant only

in some of their sections. For example, some papers were dealing mostly with service

decomposition but also mentioned vital service properties. The decomposition part was skipped

due to the fact that it is out of scope and we mainly focused on the service attributes part which

is helpful for the automation of services synthesis. We also discarded papers that were referred

by other papers already included in the pool. The final number of papers collected in our

investigation list after narrowing down our research to fit the purpose of this study was fourteen

(14). To provide a clear picture about the conducted research, a chart that shows the years each

paper was published is shown in Figure 1. It is obvious and important to state that this research

was conducted by relatively recent data sources and publications.

Figure 1: Number of papers examined by year

7

3. Literature Review

In this section, a literature review is provided according to the data sources and publications

related to the subject of this brief survey. The answers to the research questions posed above

are provided and discussed after describing the main findings of the conducted study. The review

is divided into four sections, answering one-by-one each of the research questions.

Before moving to the survey findings, let us briefly define DevOps and DevOps automation. In

order to automate processes regarding the application of the DevOps methodology in an

organization, we start by acknowledging the fact that the two teams responsible for developing

and operating the software must be inseparable. Their productivity rates and gaps must be

detected early enough so that corrective measures can be taken. But the question is how can we

detect these difficulties? The answer is to use some metrics and measurements that monitor the

whole process. These metrics are able to determine whether a weakness becomes a reality. But

which measurements have to be applied? There is no silver bullet on the usage of metrics

regarding DevOps because DevOps itself is something that varies in the first place due to its

nature of being the methodology with the highest level of agility.

Metrics and measurement activities on a DevOps environment can be divided into two

categories. The first category includes DevOps-focused metrics which are dedicated to assess, (a)

how well developers and operators are doing in terms of cost, time, resource utilization, (b) levels

of quality of service, and (c) customer response and satisfaction. Some of these metrics are

delivery cycle time, mean time to detect problems and weaknesses, mean time to repair

problems, quality at the source code, etc. The second category includes cloud infrastructure

metrics which are dedicated to sense the distributed environment in terms of services provided

such as availability, security, reliability etc. Therefore, these two groups of metrics are strongly

coupled aiming to sense the distributed environment and to collect meaningful data in each

phase and activity so as to trigger the automation tasks and procedures.

Build, deployment and operation activities focus on automated procedures for adjusting and

reconfiguring the DevOps environment. As mentioned before, these procedures are driven by

quality metrics and follow specific workflows and rules. Automation mostly involves approaches,

algorithms and tools for (a) monitoring the delivery of services to clients and offering decision

support or decision making for reconfiguration that ensures compliance with service level

agreements, (b) performing resource management and leveling towards green Cloud, and (c)

offering synthesis or composition of services to build larger functional entities or applications.

In a more advanced and formal level, DevOps automations can be aided through Decision

Support Systems (DSS) or Decision-Making Systems (DMS), which are specific systems that may

automatically monitor SLAs and the reconfiguration of the software systems, or, in general, of

the whole environment. The abovementioned systems essentially implement algorithms and

8

methods including Artificial or Computational Intelligence, like Artificial Neural Networks,

Evolutionary Algorithms, Optimization Models, Fuzzy Logic etc. to measure the level of service

delivery (e.g. time and performance) and adjust the availability of resources to improve it. One

important goal within this approach is that it provides the advantage of reinforcing

communication between the developers and the operators whilst increasing their productivity

rates at the same time.

3.1. Which and how automated procedures support DevOps practices?

As previously mentioned, it is obvious that some procedures that may be automated, support

various DevOps practices. But which of those automated procedures achieve this support, to

what extent and how? As DevOps varies in application from one case or organization to another,

some procedures may enhance productivity whilst some others may not. This mostly depends on

the DevOps team and each individual organization can choose a combination of procedures to

be applied in order to achieve DevOps automation in its own procedures or tasks.

In order to provide an answer to the question of this section, we should first define what DevOps

aims at. The concept of DevOps is understood differently by individuals. The most common

concepts or notions behind DevOps are Communication and Collaboration, Continuous Delivery,

Automated Pipeline, Continuous Feedback and Continuous Deployment.

Regarding the second part of the research question, which aims to identify how automated tasks

supports DevOps practices, we must first note that like with all new processes, the application of

DevOps provides certain benefits but also introduces some challenges. According to the literature

examined, the number of challenges in comparison to the benefits is minimal. This means that

DevOps provides much more benefits than challenges or blind spots. These benefits include code

version control and parallel deployment, scheduled deployment and testing, quality assurance

and continuous integration within the project, real-time automated monitoring, cloud and

database management, innovation in the development process, rapid delivery etc.

The work in [7] describes a systematic mapping study performed to explore DevOps. The main

findings of this study were that DevOps is supported by culture of collaboration, automation,

measurement, information sharing and Web service usage. More specifically, automation is

supported by various design patterns such as, use cloud storage for storing big files, process

asynchronous jobs using queues, use of a Real-time user monitoring tool etc.

Aiming to provide clarity and understanding of DevOps, the research work in [8] applied a

systematic literature review, in which catalogues of DevOps concepts, practices, tools, benefits

and challenges were developed. The analysis of the results showed that despite the fact that

DevOps may be considered as an automation centric approach, at the same time the key

concepts are human communication and collaboration, continuous delivery and automated

pipeline. The main outcome of the analysis addressed in this study was that the key theme is

9

around “automation”, while a large number of tools were identified that are responsible to

support the automation of the DevOps pipeline.

Authors in [9] identified the significance of the automation processes and the crucial role they

have in applying DevOps practices. A systematic classification of DevOps artifacts was presented

and it was also shown how different kinds of artifacts can be transformed into TOSCA

specifications.

The study in [3] describes an empirical research which aims to highlight the factors influencing

DevOps implementation. One of the main findings of this research is the significance of

automation pipeline implementation and its critical role towards delivering DevOps benefits.

Based on this research, the basic software development activities, like planning, development,

testing and deployment, constitute the DevOps capability enablers. These activities, however,

require the support of technical practices, that is, the technological enablers. Technological

enablers support DevOps capabilities by automating tasks such as Build, Test, Deployment,

Monitoring, and Recovery.

Finally, the authors in [10], investigate the elements that characterize the DevOps phenomenon

using a literature survey and interviews with practitioners actively involved in the DevOps

movement. Four main dimensions of DevOps were identified: Collaboration, automation,

measurement and monitoring. According to the literature review and the practitioners which

were interviewed by the authors, automation in DevOps is required in operations processes and

increased test automation is necessary in the software development process. Particular emphasis

is placed on the need for operations processes to be flexible, repeatable and fast by eliminating

manual processes.

3.2. Which automation tools are being used to support DevOps teams?

As has been highlighted in this survey, in order to benefit from the outcomes of applying DevOps

practices, various automated procedures have to be applied. But what comes first is

communication between people. DevOps cannot tackle problems and will not ensure all the

positive outcomes if communication is non-existent. The basic building block of DevOps is the

harmonious communication and cooperation between the Development team and the Operation

team. This is the basic building block of DevOps and from there we can enhance DevOps by the

so-called automation tools.

This section aims to answer the second research question which seeks for possible tools that can

be used to automate DevOps procedures. To make the connection with the previous section,

DevOps practices are supported by a series of automated procedures that are mostly provided

by DevOps automation tools, like the following in descending order of frequency: Iaas/PaaS,

Continuous Integration, Continuous Deployment, Configuration and Provisioning,

Containerization, Monitoring, Build, Collaboration, Source Control Management, Testing and,

10

lastly, Logging/Security. These are not specific tools but rather tool categories. Depending on the

field that the organization that runs on DevOps aims to amplify, it may choose the best tools in

its own case that lie within the specified category. For example, if a DevOps team is aiming at

enhancing its productivity in the Continuous Deployment process, there are some tools that will

aid it to achieve this. This research question basically provides information supporting that there

are a series of tools which can be used in each case and that these tools those are divided in

categories. Therefore, depending on the organizational needs, the available tools can be adapted

to fulfill the targets of the specified category (e.g. productivity).

A literature review performed by the authors in [8] identified twelve categories of DevOps tools:

Source Control Management, Continuous Integration, Continuous Deployment, IaaS/PaaS,

Monitoring, Database Management, Containerization, Configuration and Provisioning,

Logging/Security, Build, Testing and Collaboration. According to the frequency of their

occurrence in the total number of reports, IaaS/PaaS, Continuous Integration and Continuous

Deployment appear to be the most important categories. The DevOps tools that are reported by

this work are listed in Table 1.

Table 1:DevOps Tools List (extracted as reported in [8])

Category Tools Features

Source Control
Management

Github

• Github is a web-based Git (private and public accounts)

repository designed for version control and source
code management.

• Github provides team collaboration
• Provide logs containing (commit history, tracking

labels, pull requests, code review comments, email
notifications, task lists, readme code information file)

Bitbucket • Similar features to Github

• Offers both free public and private commercial
accounts

Continuous Integration Codeship • Use Docker abilities to automate development and
deployment

• Enable developers to create their own test units -
Provide team notifications with code changes and test
results

• Deploy and run code in parallel simultaneously with
tests

• Integrate many programming languages (Java, Ruby,
Python, PHP, GO)

• Integrate many platforms (Heroku, AWS)
• Integrate various databases (MySQL, MongoDB)

Travis CI • Used to build, test, deploy code hosted on Github
• Enables automated continuous integration with Github

11

• Notify team with test results through email, postings
or any IRC channel

• Support various programming languages (Java, C, C++,
C#, Perl, Python, Ruby, Node.js)

• Provide its own command-line UI
• Enable parallel deployment and testing

Continuous Deployment Codeship • Enable multiple deployment sequential or parallel
• Enable developers to run deployments commands on

an authenticated remote server using SSH. This feature
allows developers to trigger deployment/update on
external systems for stakeholders.

Travis CI • Enable developers to setup continuous deployment
schedule.

• Enable developments to automate deployment
schedule.

• Integrated deployment with Github.
IaaS/PaaS Heroku • Heroku is a PaaS that support (Ruby, Java, Node.js,

Python, PHP)

• Heroku Git server handle application pushes with
repository

• Heroku integrates with Github, Bitbucket
• Enables automated continuous deployment
• Provide logs and maintain version control of code
• Heroku Logplex collects all application reporting

Monitoring Nagios • Nagios is an open source application that monitors
systems

• Nagios also provides remote monitoring through its
Remote Plugin Executor which supports SSH and SSL
encrypted tunnels.

• Nagios enable developers to build reporting units using
programming languages (Shell Scripts, C++, Perl, Ruby,
Python, C#, etc.)

• Nagios also provide a powerful tool for DevOps driven
SD applications that consist automated log file rotation
and creating in a parallel enabled service distribution.

New Relic • New Relic provides insight into an SD application at
runtime

• New Relic delivers unique monitoring log metrics of
cloud application development and it deployment from
UI to backend

• New Relic provides continuous automated reporting
on health, status, runtime, build, deployment and
performance or a cloud application.

Database Management MongoDB • MongoDB is a free open source, cross-platform,
document-oriented database program.

12

• Classified as NoSQL database application, MongoDB
avoid tradition table-based relational database in favor
of JSON-like documents with dynamic schema.

• MongoDB provides developers with Ad hoc queries,
Aggregation using MapReduce and Server-side JS.

Logging/Security Loggly • Loggly is a cloud-based log management and analytical
service.

• Loggly summarizes automatically a software
application log and provides real-time analysis for
software processes.

• Loggly increases delivery speed and provide guided-
data log to DevOps team based on application
troubleshooting results.

• Loggly manages logs from any source or application
test units coded in any language (Java, PHP, Node.js,
Python, .NET, JS, Docker, Linux, Windows, Apache)

Papertrail • Cloud based log monitoring system - Integrates with
Heroku metrics logs

• Integrates with HipChat collaborative tool
Build Codeship • Codeship provides build capability for DevOps team

form end-to-end in the development pipeline.
Travis CI • Travis CI provide a powerful build environment that

can be setup in travis.yml
Testing Cucumber • Runs automated acceptance tests written in a

behavior-driven development style.
• Cucumber merges SD specifications and test

documentation into one cohesive log.
• Cucumber uses Gherkin, a language that defines

Cucumber test cases which is designed to be human
readable non-technical.

Junit • Junit builds test functions from normal functions by
providing @Test annotation to the method header.

• Automated Test units are composed of collection of
annotated Java methods that handle particular
exceptions or provide runtime report about a
component or process behavior.

Collaboration Slack • Slack is a cloud-based collaboration tool it improves
DevOps team communication by offering an IRC-like
features which can handle files exchange from
integrated could such as Trello, Google Drive, DropBox,
Heroku, Github, etc.

13

HipChat • HipChat is a web-based service for internal private chat
and messaging

• HipChat supports group and one-on-one chats, it also
support video calling (group and pair) between team
members

• HipChat relays messages through SMS services as well
and allows a user a 5GB storage capability

• HipChat integrates the team progress from different
repositories such as Bitbucket, Github, etc.

The authors in [11] present a brief overview of the most recent DevOps technologies, such as

delivery tools. Through this overview, some tools appear to be mandatory in automating DevOps

and particularly important is the selection of the right tool for an environment or project. The

tools being discussed in this work are categorized, according to DevOps phases, into three

categories and, based on the tool type, into five categories. The categories based on DevOps

phase are Build, Deployment and Operations. The categories based on tool type are Build,

Continuous Integration, Configuration Management, Logging and Monitoring. The full list of the

automation tools presented in this work is provided in Figure 2, along with various other features.

14

Figure 2: List of DevOps Tools (Source: [11])

3.3. Which are the most important services characteristics that affect automatic services

synthesis?

It is self-evident that services have a series of vital properties that define them. But in the

specified trend of services-based software development there is no concrete evidence as to

which attributes should describe a service and which of them are vital for promoting their

integration or reusability. This is a gap in service-oriented software engineering which makes this

the research area a greenfield. During this section we demonstrate how we managed to locate

and define the most important attributes that every service must bear to promote reusability

and consequently facilitate their automatic synthesis.

15

One of the most vital characteristics of a microservice is the programming language in which it

was implemented, although it is trivial to the end-user or programmer. The calculation

complexity and performance must be defined, and security mechanisms and auditability must be

provided. It is very important to describe the domain of application and/or the service itself.

Furthermore, in order to build reliable services, load balancing schemes have to be provided

along with monitoring mechanisms. Depending on the application, services may provide data

storage information by means of explaining to the programmer the way data is stored as services

use their own data storage [12].

As it has already been mentioned, endpoints are critical so that a clear picture is formed about

how data is exchanged throughout the process. If message passing and communication protocols

are provided the developer knows better how to implement the requirements. Lastly, a service

may have methods by means of executing a series of small tasks instead of a single one [13].

A more complicated but interesting study suggests some principles and patterns when

developing services, the organization of which must be ensured around business capability

(domain). Infrastructure automation can be used by providing some sort of intelligence within a

service, especially at the endpoints. Data control has to be decentralized and services have to be

designed for failure as failures occur often. These principles may be, and it is suggested to be,

reinforced with some kind of patterns like “Aggregator Microservice Design Pattern”, which is a

development approach that causes services to invoke others for data retrieval or processing.

Another pattern comes in contrast to the basic idea of the service architecture. It is well known

that services mostly use REST APIs to exchange communication messages. A new pattern known

as “Asynchronous Messaging Microservice Design Pattern” suggests the use of message queues.

In this context, it is clear that services may change forms through principles and design patterns

[14].

Garriga [15] proposed a taxonomy for the properties and features of services, which is depicted

in Figure 3. This taxonomy is quite useful as it can form the starting point for selecting services to

integrate, provided that the required functional and non-functional characteristics of the final

system which will be developed through this integration are recorded.

As previously mentioned, the programming language is important. This is stated as “the right tool

for the right job” [15]. Also, a service may have some obligations or constraints. Services may

have their interaction models define if they are synchronous or asynchronous. Based on this, the

data exchange protocol (REST, RPC, message queues) and the data storage protocol (SQL, NoSQL,

graph, document) are derived. Finally, services may have some security or management

constraints, like whether a microservice provides public or private access at the specified context,

or how it is supposed to react to failures. There is no such thing as standard development

principles in services; however, optimal combinations of technologies can be used to aid the

service functionality. Of course, this does not mean that the specified parameters and

information accompanying a service must not be provided as a documentation to the developer.

16

Figure 3: Microservice attributes depending on the field of application (Source: [15])

17

3.4. What is the level of services synthesis automation?

Quite a few of the leading vendors offer a variety of services providing the agility of developing

multi-domain applications. Some of them refer to services also as software components.

This section aims at answering the fourth research question which is to identify the level of

service synthesis automation.

Despite our efforts to identify any related papers which propose or deal with service synthesis

towards an integrated software solution or development paradigm this was not feasible. This

reveals that the corresponding research area is at its infancy and there is ample room for

innovative ideas. Probably the most enlightening paper that is closest to solving this problem of

service synthesis and automation is [18]. All the proposed layers in this paper can be used as

described with possible enhancement with a few more features to customize them so that they

fit the new purpose. Therefore, [18] is a good starting point for attempting to provide automation

in software synthesis.

According to [18], a key-concept must be introduced before the utilization of the five layers

described, and this is ontology. Through a dedicated ontology schema, the matching between

the required properties of a group of services and the features offered by services in the market

will be made feasible. Therefore, we must firstly form a pool of components, which are essentially

the services that are made available by vendors and provide a standardized form of description

for their properties; following that, we need also to describe the desired functional features of

the system under development, i.e. the software requirements, which will dictate what the final

software product is supposed do. Then, both descriptions (of available services and of sought

ones) are inserted into a component profiling process which uses an ontology-based language

like EBNF as in the case of [18] or other means (e.g. TOSCA) to perform a standardized profiling

of the functional and non-functional service descriptions. This is the first layer of the framework

in [18], which is the Description Layer. From then, we are able to move to the next step which is

pushing the profiled parts into the Location Layer. This layer aims at locating services that match

the software requirements. Then, the third layer follows, that is, the Analysis Layer, which simply

analyzes the results from the candidate (located) services and yields a list of possible candidates

that match the requirements sought. Then, the Recommendation Layer follows which suggests

to the end-user which services may be finally used in order to cover all the possible requirements

and ensure product dependability. The final layer is the Build Layer which attempts to bind all

the recommended components from the previous step to deliver the final software product. In a

nutshell, by following the layered structure proposed in [18] the automation of services synthesis

may become a reality in the near future.

18

4. Conclusions

This deliverable attempted to provide answers to the four research questions that were set from

the beginning: The first research question was “Which and how automated procedures support

DevOps practices?” The second one, “Which automation tools are being used to support DevOps

teams?” The third, “Which are the most important services characteristics that affect automatic

service synthesis?” And the fourth, “What is the level of services synthesis automation?” The

findings of each research question were presented and analyzed up to a degree depending on

the number and quality of the papers located to support the answers. The identification of these

papers was based on the standard process utilized when conducting surveys, with the sources

being primarily top multidisciplinary journals of IEEE, ACM, Elsevier etc., or top notch conferences

in the broader area of services.

For the first research question, we have stated that organizations can use a combination of

procedures to support DevOps which varies in application depending on the company’s

environment. Some procedures that support DevOps practices are Communication and

Collaboration, Continuous Delivery, Automated Pipeline, Continuous Feedback and Continuous

Deployment. Now, regarding how these procedures may support DevOps practices, they can by

providing Code Version Control, Parallel Deployment, Enable Scheduled Deployment, Enable

Scheduled Testing, Provide Quality Assurance, Continuous Integration within the project, Real-

Time Automated Monitoring, Cloud and Database Management, Innovation and new Ideas of

Development, Rapid Delivery and a series of much more.

For the second research question, we have examined a pool of resources to identify tools that

are capable of being used to support DevOps teams. These tools are not given as entities but

however as categories or families of tools that aim a purpose. These families of tools include

Iaas/PaaS, Continuous Integration, Continuous Deployment, Configuration and Provisioning,

Containerization, Monitoring, Build, Collaboration, Source Control Management, Testing and

lastly Logging/Security. Depending on the organization’s needs, a selection of tools can be

combined in order to enhance DevOps practices.

For the third research question, we must say that services have a lot of attributes that can be

classified into vital and trivial. This is meant to the end-user/developer. There are some attributes

that are trivial and do not mean anything to the developer like the programming language used

to develop the specified component at the first place. However, as vital attributes we can

consider application domain, functionality, security and auditing mechanisms, message exchange

protocols, data storage, complexity, performance and any possible principles and patterns that

were used during the component’s developing process.

For the fourth and last research question of this deliverable, we can conclude the findings within

a few steps. Firstly, there was minimal literature on this subject due to that it is a latest trend in

software engineering. A promising technique, which may be adopted and adapted, targets

19

automatic component reusability. Along the same lines, the available services and software

requirements have to be transformed into a standardized description form like EBNF or TOSCA.

Then this description is used as input in a five layer framework as proposed by (Andreou &

Papatheocharous, 2016), to define which services match the product requirements

Concluding, although in some of the research questions the available literature was poor, we

managed to collect adequate information and present our findings. We hope that these findings

will aid and enforce the work and outcome of other researchers.

5. References

[1] P. Duvall, “Breaking down barriers and reducing cycle times with devops and continuous delivery”
2012.

[2] J. Humble and J. Molesky, “Devops: A software revolution in the making,” Cut. IT J., vol. 24, no. 8,
pp. 6–12, 2011.

[3] M. Senapathi, J. Buchan, and H. Osman, “DevOps Capabilities, Practices, and Challenges,” in
Proceedings of the 22nd International Conference on Evaluation and Assessment in Software
Engineering 2018 - EASE’18, 2018, pp. 57–67.

[4] N. FORSGREN, “DevOps Delivers.,” Commun. ACM, 2018.

[5] B. Lublinsky, M. Rosen, M. J. Balcer, and K. T. Smith, Applied soa : service-oriented architecture and
design strategies. Wiley, 2013.

[6] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina,
“Microservices: Yesterday, Today, and Tomorrow,” in Present and Ulterior Software Engineering,
Cham: Springer International Publishing, 2017, pp. 195–216.

[7] F. Erich, C. Amrit, and M. Daneva, “Report: DevOps Literature Review Architectually Significant
Requirements View project Engineering the Architecturally Significant Functional Requirements in
Global Outsourcing Projects View project Report: DevOps Literature Review,” 2014.

[8] G. Bou Ghantous, A. Gill, and G. Bou, “Association for Information Systems AIS Electronic Library
(AISeL) DevOps: Concepts, Practices, Tools, Benefits and Challenges Recommended Citation,”
2017.

[9] J. Wettinger, U. Breitenbucher, and F. Leymann, “Standards-Based DevOps Automation and
Integration Using TOSCA,” in 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, 2014, pp. 59–68.

[10] M. Soni, “End to End Automation on Cloud with Build Pipeline: The Case for DevOps in Insurance
Industry, Continuous Integration, Continuous Testing, and Continuous Delivery,” in 2015 IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM), 2015, pp. 85–89.

[11] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE Softw., vol. 33, no. 3, pp. 94–
100, May 2016.

20

[12] P. Di Francesco, I. Malavolta, and P. Lago, “Research on Architecting Microservices: Trends, Focus,
and Potential for Industrial Adoption,” in 2017 IEEE International Conference on Software
Architecture (ICSA), 2017, pp. 21–30.

[13] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di Salle, “Towards
Recovering the Software Architecture of Microservice-Based Systems,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), 2017, pp. 46–53.

[14] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study Centre for Next Generation
Localisation View project SOA and Cloud Security and Assurance View project Microservices: A
Systematic Mapping Study,” 2016.

[15] M. Garriga, “Towards a Taxonomy of Microservices Architectures,” Springer, Cham, 2018, pp. 203–
218.

[16] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables DevOps:
Migration to a Cloud-Native Architecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52, May 2016.

[17] G. Kecskemeti, A. C. Marosi, and A. Kertesz, “The ENTICE approach to decompose monolithic
services into microservices,” in 2016 International Conference on High Performance Computing &
Simulation (HPCS), 2016, pp. 591–596.

[18] A. S. Andreou and E. Papatheocharous, “Towards a CBSE Framework for Enhancing Software
Reuse: Matching Component Properties Using Semi-formal Specifications and Ontologies,”
Springer, Cham, 2016, pp. 98–121.

