
Cloud-based
Software Verification

Srđan Krstić
Politecnico di Milano

Joint work with Carlo Ghezzi, Domenico Bianculli, Marcello Bersani and Pierluigi San Pietro

Cloud-based
Software Verification

Srđan Krstić
Politecnico di Milano

Joint work with Carlo Ghezzi, Domenico Bianculli, Marcello Bersani and Pierluigi San Pietro

System Specification

Software Verification

• High guarantees

• Undecidable

• Requires expert
knowledge

4

Theorem proving Model checking Testing

• High guarantees

• State explosion
problem

• Finite models, mostly

• Low guarantees

• Scalable

• Simple

Modern Software

Decentralized

Component-based

Dynamic Interaction

Third-party functionality

Dynamic behavior

Monitoring

6

System Execution trace

…

Instrumentation

Property

• Trace/History
checking

7

Offline
Monitoring

8

Online
Monitoring

• Runtime
verification

Offline vs Online Monitoring

• Execution overhead

• Scanning direction

• Preprocessing

• Specification language semantics

9

<1s

Formalizing Execution Traces:
Timed words

11

p q qp

q

1 75 8 10 14

r

rr

r

Positions:

Events:

Timestamps:

Example Properties
• P1: “At any time, the user must be logged in before executing a

withdraw operation”;

• P2: “ At any time, the user must be logged out by the system 5
minutes after logging in or after his last withdraw operation”;

• P3: “The number of withdrawal operations performed within 10
minutes before customer logs out must be less than or equal to 3, at
any time”;

• P4: “It is always the case that the total amount of money withdrawn
by any user in the last 30 days does not exceed 5000 EUR, except if
the user has previously received a higher credit limit”.

12

Formalizing Properties:
Temporal Logic

• Linear Temporal Logic

• Metric Temporal Logic

• Metric Temporal Logic with Aggregations

• Metric First-Order Temporal Logic

13

Linear Temporal Logic (LTL)
Next

14

�

X�

Linear Temporal Logic (LTL)
Eventually

15

�

F�

Linear Temporal Logic (LTL)
Globally

16

� � � � � ��

G�

…

Linear Temporal Logic (LTL)
Until

17

� � � �

�U�

�

Linear Temporal Logic (LTL)
Past operators

18

�

�

�

������ � ����

Y� P�

H� �S�

19

P1: “At any time, the user must be logged in
before executing a withdraw operation”

G(withdraw � ¬logOff S logIn)

withdrawlogIn

20

P2: “At any time, the user must be logged out
by the system 5 minutes after logging in or

after his last withdraw operation”

Metric Temporal Logic (MTL)

21

� � � ��

1 75 8 10 14 17 27

�U(4,12]�

4 < 14 - 5 ≤ 12

� �� �

22

P2: “At any time, the user must be logged out
by the system 5 minutes after logging in or

after his last withdraw operation”

withdrawlogIn logOut

5 minutes

����

G(logIn � F[300,300] logOut � F(0,300]withdraw)

G(withdraw � G(0,300]¬withdraw � F[300,300] logOut)

23

P3: “The number of withdrawal operations
performed within 10 minutes before customer

logs out is less than or equal to 3, at any time”

MTL with Aggregations

24

� � ��

� < �

� �K
¼

C/
<�(�)

�
¼

25

P3: “The number of withdrawal operations
performed within 10 minutes before customer

logs out is less than or equal to 3, at any time”

G(logOut � C600�3 (withdraw))

withdraw logOut

10 minutes

����

withdraw

26

P4: “The amounts of money withdrawn by any
user does not exceed 5000 EUR, except if the
user has previously received a higher credit

limit”.

Timed Word with Relations

27

p q qp

q

1 75 8 10 14

r

rr

r

Positions:

Events:

Timestamps:

Relations:

Timed Word with Relations

28

1
2

1 5 10 14 27

1 40 1 30

3 20

1

1 70

2 20

3
4

3 2
4

logIn
(user)

withdraw
(user, sum)

logOut
(user)

3 30

4 50

2 10

29

P4: “The amounts of money withdrawn by any
user does not exceed 5000 EUR, except if the
user has previously received a higher credit

limit”.

G(�u.�a.(withdraw(u, a) � a � 5000 � P creditLimit(u)))

Monitoring Algorithms

LTL Monitoring Algorithm

31

FI(�)

��� � � � � � � � ��� � � � �� � � �

Reverse scanning

Incremental verdict

Eventually operator

Arbitrary nesting

MTL Monitoring Algorithm

32

FI(�)

Size of the temporal interval

Queue-like data structure

Granularity of the trace

Metric Eventually operator

33

FI(�) ()
I

� �� �

MTL Monitoring Algorithm

RV 2011

Distributed Monitoring

36

Wikipedia Page Traffic
Statistics Dataset

Contains 7 months of hourly page view statistics for all
articles in Wikipedia

Size: 320 GB
Created On: June 9, 2009

DARPA Scalable Network
Monitoring (SNM) Program Traffic

37

Size: 7083.4 TB
Created On: November 12, 2009

Contains 9 days of captured network traffic

38

Main Challenge

39

Large traces that cannot be collected, stored
and processed on a single machine.

Solution: Distributed Monitoring
using MapReduce

40

Cut Blend

MapReduce

41

42

map (, ,)

(, ,)

43

reduce (, ,)

reduce (, ,)

reduce (, ,)

44

How to use MapReduce
for Monitoring?

45

Parallelization Strategies
Splitting the formula (general, limited parallelization)

•

•

Splitting the trace (heuristic, high parallelization)

•

•

46

Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting

Parallel sub-formula processing

47

p q r sp

G(0,10000)

U(0,500)

∧

�

∨¬
Formula

Syntax Tree

Iterative
Trace Subsets

First position?

Trace

48

p q r sp

G(0,10000)

U(0,500)

∧

�

∨¬

MAP: associate
sub-formulae with

super-formulae

Parallel sub-formula processing

REDUCE: monitor
the sub-formulae

REPEAT

49

Trace checking of Metric Temporal Logic with

Aggregating Modalities using MapReduce

Domenico Bianculli1 , Carlo Ghezzi2 , and Srd̄an Krstić2

1 SnT Centre - University of Luxembourg, Luxembourg

domeni
co.bia

nculli
@uni.l

u

2 DEEP-SE group - DEIB - Politecnico di Milano, Italy

{ghezz
i,krst

ic}@el
et.pol

imi.it

Abstract. Modern, complex software systems produce a large amount of execu-

tion data, often stored in logs. These logs can be analyzed using trace checking

techniques to check whether the system complies with its requirements specifi-

cations. Often these specifications express quantitative properties of the system,

which include timing constraints as well as higher-level constraints on the occur-

rences of events, expressed using aggregate operators.

In this paper we present an algorithm that exploits the MapReduce programming

model to check specifications expressed in a metric temporal logic with aggregat-

ing modalities, over large execution traces. The algorithm exploits the structure of

the formula to parallelize the evaluation, with a significant gain in time. We report

on the evaluation of the implementation—based on the Hadoop framework—of

the proposed algorithm and comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBA), are built accord-

ing to a modular and decentralized architecture, and execute on a distributed environ-

ment. Their development and their operation depend on many stakeholders, including

the providers of various third-party services and the integrators that realize composite

applications by orchestrating third-party services. Service integrators are responsible,

to the end-users for guaranteeing an adequate level of quality of service, both in terms

of functional and non-functional requirements. This new type of software has triggered

several research efforts on the specification and verification of SBAs.

In previous work [7], some of the authors presented the results of a field study on

property specification patterns [11] used in the context of SBAs, both in industrial and

in research settings. The study identified a new set of property specification patterns

specific to service provisioning. Most of these patterns are characterized by the pres-

ence of aggregate operations on sequence of events occurring in a given time window,

such as “the average distance between pairs of events (e.g., average response time)”,

“the number of events in a given time window”, “the average (or maximum) number

of events in a certain time interval over a certain time window”. This study led to the

definition of SOLOIST [8] (SpecificatiOn Language fOr servIce compoSitions inTerac-

tions), an extension of metric temporal logic with new temporal modalities that support

aggregate operations on events occurring in a given time window. The new temporal

SEFM 2014

Health Insurance Portability
and Accountability Act of 1996

50

“Retain the documentation […] for
6 years from the date of its creation
or the date when it last was in effect,

whichever is later”

Trace Checking Temporal
operators

51

FI(�)

Trace Checking Temporal
operators

52

FI(�)

Trace Checking Temporal
operators

53

FI(�)

OutOfMemoryException!

Parallelization Strategies
Splitting the formula

•

•

Splitting the trace

•

•

54

Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting (vertical)

Data-wise trace splitting (horizontal)

55

()

F(0,10000]()�

0 10000

Temporal operator decomposition

56

()](

F(0,5000]() F(0,5000)()� �

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

0 10000

Temporal operator decomposition

57

Equivalent?

F(0,10000)() � F(0,5000]() � F=5000(F(0,5000)())� � �

Temporal operator decomposition

Yes*

* if we slightly tweak the MTL semantics

Temporal operator decomposition

1. Analyze the temporal operators in the formula

2. If all intervals are small enough*, apply the parallel sub-
formula processing

3. Otherwise, decompose the formula to be small enough*
and then apply the parallel sub-formula processing

ICSE 2016

Parallelization Strategies
Splitting the formula

•

•

•

•

60

Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting

Splitting the trace

61

Splitting the trace

Goal: Split the trace T based on a particular formula Φ into
trace slices T1, T2, … Tk such that:

if T ⊨ Φ then for all ∀i.Ti ⊨ Φ

if T ⊭ Φ then there exists i such that Ti ⊭ Φ

Parallelization Strategies
Splitting the formula

•

•

•

•

62

Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting

Splitting the trace

Time-wise trace splitting

63

G(p)

qp

q

q

p

rp p

r

1 75 8 10 14

Time-wise trace splitting

64

G(p) G(p)

qp

q

q

p

rp p

r

1 75 8 10 14

Time-wise trace splitting

65

G[0,3](p)

pp

q

q

p

rp p

r

1 75 8 10 14

Time-wise trace splitting

66

qp

q

q

p

rp p

r

1 75 8 10 14
G[0,3](p) G[0,3](p)

Time-wise trace splitting

67

qp

q

q

p

rp p

r

1 75 8 10 14
G[0,3](p) G[0,3](p)

q q

p

8 10

68

Splitting: The Temporal Structure

Φ range(Φ)

(p ⋀ q) U[2,4] (F[1,3]p)
[0,0] [0,0] [0,0]

[0,3] [0,7][0,0]

69

Splitting: The Temporal Structure

𝜏b - 𝜏c = range(Φ)

𝜏a 𝜏b

𝜏c … 𝜏d

…

Parallelization Strategies
Splitting the formula

•

•

Splitting the trace

•

•

70

Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting

Data-wise trace splitting

71

1 75 8 10 14

71

r1(t1,t2)

r2(t1,t2)

Data-wise trace splitting

72

1 75 8 10 14

r1(t1,t2)

r2(t1,t2)

1 75 8 10 14

r1(t1,t2)

r2(t1,t2)

Example
• Split log based on parameters of log events

• Formula:

• Slices cover different reports:

73

G(�r.(publish(r) � P(approve(u))))

Example
• Split log based on parameters of log events

• Formula:

• Slices cover different reports:

74

G(�r.(publish(r) � P(approve(u))))

• What about these formulae?

75

Example

G(�r.(publish(r) � ¬�r�.(P publish(r�) � r� > r)))

• Bottom line: it’s a heuristic

G(�r.(publish(r) � F publish(summary)))

RV 2014

Summary

78

Open problems

• Combine the orthogonal parallelization strategies

• Provide a general distributed framework for online
monitoring

• Generalize the monitoring approach: given a formula, the
least general (hence, the least complex) algorithm is
used to monitor it

79

Cloud-based
Software Verification

Srđan Krstić
Politecnico di Milano

Joint work with Carlo Ghezzi, Domenico Bianculli, Marcello Bersani and Pierluigi San Pietro

References
• [1] David Basin, Felix Klaedtke, and Eugen Zalinescu: Algorithms for Monitoring Real-time Properties

• [2] Domenico Bianculli, Carlo Ghezzi and Srdjan Krstic. Trace checking of Metric Temporal Logic with
Aggregating Modalities using MapReduce.

• [3] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdjan Krstic, and Pierluigi San Pietro. Efficient
Large-scale Trace Checking Using MapReduce

• [4] Martin Leucker, Christian Schallhart: A brief account of runtime verification

• [5] Srdjan Krstic: Trace Checking of Quantitative Properties

• [6] Martin Leucker: Teaching Runtime Verification

• [7] David A. Basin, Felix Klaedtke, Samuel Müller, Eugen Zalinescu: Monitoring Metric First-Order Temporal
Properties

• [8] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdjan Krstic, and Pierluigi San Pietro: SMT-based
checking of SOLOIST over sparse traces

• [9] Domenico Bianculli, Carlo Ghezzi, Srđan Krstić, and Pierluigi San Pietro: Offline trace checking of
quantitative properties of service-based applications

• [10] David Basin, Germano Caronni, Sarah Ereth, Matus Harvan, Felix Klaedtke, and Heiko Mantel: Scalable
Offline Monitoring

81

