Cloud-based
Software Verification

Srdan Krstic
Politecnico di Milano

Joint work with Carlo Ghezzi, Domenico Bianculli, Marcello Bersani and Pierluigi San Pietro

Cloud-based
Software Verification

Srdan Krstic
Politecnico di Milano

Joint work with Carlo Ghezzi, Domenico Bianculli, Marcello Bersani and Pierluigi San Pietro

Software Verification

System |: Specification

Maximum Torque Operating conditions:

200 ;- Max rms cument: 400 Arms
Motor temperature: 50°C

800 -
m .

Am v

£

<

Q 50 -

—

g

o -

2 3 -

S

8

_ev
v

Speed (rpm)

Theorem proving Model checking Testing

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

‘MY CODE'S COMPHANG.
HEY! GETBACK T

OH. CARRY ON. l A

High guarantees * High guarantees » Low guarantees
Undecidable - State explosion
sroblem Scalable
- Requires expert
knowledge * Finite models, mostly . Simple

4

Modern Software

Dynamic behavior
Component-based
Decentralized
Dynamic Interaction

Third-party functionality

Monitoring

R

» Instrumentation

Property

Execution trace

Offline
& Monitoring

» Trace/History
checking

-
-

Offline vs Online Monitoring

- Execution overhead
* Scanning direction
* Preprocessing

- Specification language semantics

2015-05-15 11:13:04,155 DEBUG org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend: [actor] recel
el DEBUG org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend: [actor] hanc
DEBUG org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend: [actor] recel
o i} DEBUG org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend: [actor] hanc
2015 05-15 11:13: 06 155 DEBUG org.apache.spark.scheduler. cluster SparkDeploySchedulerBackend: [actor] recej
D15-05~- ' ‘06 1] ora.apache.spa neduleé narkbenlo heaulerBackend: lactor! hand
2015-05-15 11:13:06,693 DEBUG org.apache.hadoop.ipc.Client: The ping interval is 60000 ms.
2015-05-15 11:13:06, 694 DEBUG org.apache.hadoop.ipc.Client: Connecting to localhost/127.0.0.1:9000
015-05- :13:06,695 DEBUG org.apache.hadoop.ipc.Client: [P ient 08 806) connection to localhost
2015-05-15 11:13:06,695 DEBUG org.apache.hadoop.ipc.Client: IPC Client (1198532806) connection to localhost
2015-05-15 11:13:06,696 DEBUG org.apache.hadoop.ipc.Client: IPC Client (1198532806) connection to localhost
2015-05-15 11:13:06,697 DEBUG org.apache.hadoop.ipc.ProtobufRpcEngine: Call: renewlLease took 4ms
i e L 97 DEBUG org.apache.hadoop.hdfs.LeaseRenewer: Lease renewed for client DFSClient_NO
7JDEBUG org.apache.hadoop.hdfs.LeaseRenewer: Lease renewer daemon for [DFSClient_
: DEBUG org.apache.spark.util.Utils: Shutdown hook called
2015 05-15 11 13:06, 903 DEBUCG org. apache spark. storage DiskBlockManager: Shutdown hook called
2015-05-15 11:13:06.908 ERROR org.apache.hadoop.hdfs.DFSClient: Failed to close inode 16409
ava.io.lOException: All datanodes 127.0.0.1:50010 are bad. Aborting...
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutput
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer. processDatanodeError(DFSOutputStream Java:

at ora.ap nNe.Nadoon.nag D 0] paAMIDate PAME N(L 0 i A

2015-05-15 11 13:06,912 DEBUG org.apache.hadoop.ipc.Client: stopping client from cache org. apache hadoop.

2015-05-15 11:13:06,913 DEBUG org.apache.hadoop.ipc.Client: removing client from cache: org.apache.hadoop,
2015-05-15 11:13:06,913 DEBUG org.apache.hadoop.ipc.Client: stopping actual client because no more referenc
2015-05-15 11:13:06,913 DEBUG org.apache.hadoop.ipc.Client: Stopping client

2015-05-15 11:13:06,914 DEBUG org.apache.hadoop.ipc.Client: IPC Client (1198532806) connection to localhost
2015-05-15 11:13:06,914 DEBUG org.apache.hadoop.ipc.Client: IPC Client (1198532806) connection to localhost
2015-05-15 11:13:06,931 DEBUG org.apache.spark.repl.SparklLoop$SparklLoopinterpreter: parse(" sc.stop()
2015-05-15 11:13:07,153 DEBUCG org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend: [actor] recel
2015-05-15 11:13:07,153 DEBUG org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend: [actor] haml

Formalizing Execution Traces:
Timed words

Timestamps: I 5 7/ 8 10 | 4
Positions: —€————0—0—0—>
r > > q q r
Events:

Example Properties

- Pl: “Atany time, the user must be logged in before executing a
withdraw operation’;

- P2: “ At any time, the user must be logged out by the system 5
minutes after logging in or after his last withdraw operation”;

* P3: “The number of withdrawal operations performed within 10
minutes before customer logs out must be less than or equal to 3, at
any time”;

- P4: “ltis always the case that the total amount of money withdrawn

by any user in the last 30 days does not exceed 5000 EUR, except if
the user has previously received a higher credit limit”.

12

Formalizing Properties:
Temporal Logic

* Linear Temporal Logic
* Metric Temporal Logic
* Metric Temporal Logic with Aggregations

* Metric First-Order Temporal Logic

13

Linear Temporal Logic (LTL)
Next

R

v
B

¢

Linear Temporal Logic (LTL)
Eventually

F_¢

v
B

¢

Linear Temporal Logic (LTL)
Globally

Gop

v
.

o ¢ ¢ ¢ ¢ ¢ 0 .

Linear Temporal Logic (LTL)
Until

$UY

v
.

o ¢ ¢ ¢ Y

Linear Temporal Logic (LTL)
Past operators

Y¢ P
¢ ¢
Ho PSP
v v

¢ 9 ¢ 9 9 ¢ ¢ Voo P 9 ¢

Pl: “At any time, the user must be logged in
before executing a withdraw operation”

G(withdraw — —logOff S login)

v
B

logln withdraw

19

P2: “At any time, the user must be logged out
by the system 5 minutes after logging in or
after his last withdraw operation™

20

Metric Temporal Logic (MTL)

OU (4,119

v
5 7 8 10 14 17 27
e

o ¢ ¢ ¢ Y

N
4<14-5=<12

P2: “At any time, the user must be logged out
by the system 5 minutes after logging in or
after his last withdraw operation™

G(/Og/ﬂ — F[BOO,BOO] /OgOUt V F(Ojgoo]Wllthdl’GW)
G(Withdl"ClW N\ G(O,BOO] —withdraw — F[3007300] /OgOUt)

5 minutes
‘K N

—90—90—-0—90—0-90-90-90—

logln withdraw logOut

22

P3: “The number of withdrawal operations
performed within 10 minutes before customer
logs out is less than or equal to 3, at any time”

23

MTL with Aggregations

T— K T
! !
)

4 </

24

P3: “The number of withdrawal operations
performed within 10 minutes before customer
logs out is less than or equal to 3, at any time”

G(logOut — @600 (withdraw))

|0 minutes :
_ ~ 4

— 9909090900 9090 0o

withdraw withdraw logOut

25

P4: “The amounts of money withdrawn by any
user does not exceed 5000 EUR, except if the
user has previously received a higher credit

limit”.

26

Timed Word with Relations

Timestamps: I 5 7/ 8 10 | 4
Positions: —€————0—0—0—>
r > P q q r
Events:
r d r
=== =
Relations: %
=E== BB B

27

Timed Word with Relations

| 5 |0 | 4 27
logln T .
(user) L 3

2 4
withdraw | | 40| [1 [30 | |70 3 [30] [2]10]
[S 3 |20 2 |20 4 |50

e]

28

> [~

P4: “The amounts of money withdrawn by any
user does not exceed 5000 EUR, except if the
user has previously received a higher credit

limit”.

G(Vu.Va.(withdraw(u,a) — a < 5000 V P creditLimit(u)))

29

Monitoring Algorithms

LT L Monitoring Algorithm

Eventually operator
Arbitrary nesting
Reverse scanning

Incremental verdict

Fi(o)

000000000 000000000000>
L T7TLL 1L LTT LT LT LLTTTTTT

31

MTL Monitoring Algorithm

Metric Eventually operator

Queue-like data structure

Size of the temporal interval

Granularity of the trace D

32

MTL Monitoring Algorithm

LN
Fi(9) —)

petrd e PY
(r-.\g,uw\\ of M ric e
\\\0(\c\ he W e de

\0\\\;\'\ \ nd & ant

ferenc o) and i ar
\ hts xey con

Distributed Monitoring

Wikipedia Page Traffic
Statistics Dataset

Contains 7 months of hourly page view statistics for all
articles in Wikipedia

Size: 320 GB
Created On: June 9, 2009

36

DARPA Scalable Network
Monitoring (SNM) Program Traffic

Contains 9 days of captured network traffic

Size: 7083.4TB
Created On: November 12,2009

37

Snowden

% Edward Snowden {x +% Follow
\

| forgot to turn off notifications. Twitter sent
me an email for each:

Follow
Favorite
Retweet
DM

47 gigs|of notifications. #lessonlearned

38

Main Challenge

Large traces that cannot be collected, stored
and processed on a single machine.

Solution: Distributed Monitoring
using MapReduce

39

MapReduce

Cut Blend

40

41

42

redégjce ()&/’ }/’ }/)'::> Lj L.,

redRuce ())w))w))“) = !

reduce (%, 1,)
¥

&

How to use MapReduce
for Monitoring?

Parallelization Strategies

Splitting the formula (general, limited parallelization)
Parallel sub-formula processing
* Temporal operator decomposition
Splitting the trace (heuristic, high parallelization)
* Time-wise trace splitting

* Data-wise trace splitting

46

Parallel sub-formula processing

First position? -
Iterative
Trace Subsets —_— / _
o G(0,10000)
ormula
Syntax Tree / \(O 50 O)- \I/ I
I /N / \
P P q r S

Trace -

47

Parallel sub-formula processing

-
MAP: associate

sub-formulae with] / _

super-formulae G
(0, 10000)
REDUCE: monitor - / \(O SOO)- \I/]
the sub-formulae
I /N / \
REPEAT P P q T S

48

Health Insurance Portability
and Accountability Act of 1996

“Retain the documentation [...] for
6 years from the date of its creation

or the date when it last was in effect,
whichever is later”

50

Trace Checking Temporal
operators

]
Fi(9)

Trace Checking Temporal
operators

CH
Fi(9)

Trace Checking Temporal
operators

OutOfMemoryException!

53

Parallelization Strategies

Splitting the formula

Parallel sub-formula processing

+ Temporal operator decomposition
Splitting the trace

+ Time-wise trace splitting (vertical)

- Data-wise trace splitting (horizontal)

54

Temporal operator decomposition

0 10000

()
F (0. 10000] (@)

55

Temporal operator decomposition

0 10000

(i¢)
F (050001 (@) F (0.5000) (@)

F (0,10000) (@) = F (0,500 (@) V F=s5000(F(0,5000) (®))

56

Temporal operator decomposition

F (0,10000) (@) = F(0,50001 (®) V F=5000(F (0,5000)(®))
Equivalent?

Yes

* if we slightly tweak the MTL semantics

57

Temporal operator decomposition

|. Analyze the temporal operators in the formula

2. If all intervals are small enough™, apply the parallel sub-
formula processing

3. Otherwise, decompose the formula to be small enough*
and then apply the parallel sub-formula processing

o extent our P
o L. The ovat
., \’n\‘“‘“‘N

Parallelization Strategies

Splitting the formula
Parallel sub-formula processing
+ Temporal operator decomposition
Splitting the trace
+ Time-wise trace splitting

- Data-wise trace splitting

60

Splitting the trace

Goal: Split the trace T based on a particular formula ® into
trace slices T, T?, ... T such that:

if TE ® then forall Vi.T'= @
if T # ® then there exists i such thatT' = ®

61

Parallelization Strategies

Splitting the formula
Parallel sub-formula processing
+ Temporal operator decomposition
Splitting the trace
+ Time-wise trace splitting

- Data-wise trace splitting

62

Time-wise trace splitting

G(p)

63

Time-wise trace splitting

G(p) G(p)
| 5 7 3 0 14
- —
p p p q q r

64

Time-wise trace splitting

Gro,31(p)

65

Time-wise trace splitting

Gro,31(p) Gro,31(p)
| 5 7 8 0 14
R —
p p p q q r

66

Time-wise trace splitting

Gro,31(p) v Gro,31(p)
| 5 7 8 10 8 10 14
— =
D p P g q q q r

67

Splitting: The Temporal Structure

O = range(®P)

[0,0] [0,7] [0,3]

(P A q) Upg (Fri,31p)

[0,0] [0,0] [0,0]

68

Splitting: The Temporal Structure

Tb - Tc = range(P)

69

Parallelization Strategies

Splitting the formula

Parallel sub-formula processing

+ Temporal operator decomposition
Splitting the trace
+ Time-wise trace splitting

- Data-wise trace splitting

70

Data-wise trace splitting

I 5 / 8 10 | 4

rl (el £2) p—— E
F2(t],£2) ——— E 1 —— ——

71

Data-wise trace splitting

S e

rl(t],22) =
r2(tl t2) —F— —— S T] [—
5 /

S, e

rl(tl,c2) i —— ——
r2(tl,t2) [T 1 5 [T 1 ﬁ

72

Example

- Split log based on parameters of log events

* Formula: G(Vr.(publish(r) — P(approve(u))))

- Slices cover different reports:

2012-08-21 2012-09-01 2012-09-20 2012-09-30 2012-10-01 2012-10-31
| | | | i ...
approve(#101) publish(#101)
approve(#102) publish(#102)
approve(#103) publish(#103) publish(#103)

73

Example

- Split log based on parameters of log events

* Formula: G(Vr.(publish(r) — P(approve(u))))

- Slices cover different reports:

2012-08-21
|

2012-09-01
|

2012-09-20
|

2012-09-30 2012-10-01 2012-10-31

| | ...

p
3pprove(#1 01)

publish(#101)

) data slice 1

~\

approve(#102)

publish(#102)) data slice 2

¢\

approve(#103) publish(#103) publish(#103))data slice 3

74

Example

 What about these formulae?

G(Vr.(publish(r) — —3r'.(P publish(r') Ar > r)))

G(Vr.(publish(r) — F publish(summary)))

 Bottom line: it’s a heuristic

75

Summary

Monitoring

Instrumentation

Execution trace

Linear Temporal Logic (LTL)
Past operators

Main Challenge

Large traces that cannot be collected, stored
and processed on a single machine.

Solution: Distributed Monitoring
using MapReduce

»

Parallelization Strategies

Splitting the formula (general, limited parallelization)
* Parallel sub-formula processing
* Temporal operator decomposition

Splitting the trace (heuristic, high parallelization)
* Time-wise trace splitting

* Data-wise trace splitting

e

MTL Monitoring Algorithm

Open problems

- Combine the orthogonal parallelization strategies

* Provide a general distributed framework for online
monitoring

* Generalize the monitoring approach: given a formula, the
least general (hence, the least complex) algorithm is
used to monitor it

79

Cloud-based
Software Verification

Srdan Krstic
Politecnico di Milano

Joint work with Carlo Ghezzi, Domenico Bianculli, Marcello Bersani and Pierluigi San Pietro

References

* [1] David Basin, Felix Klaedtke, and Eugen Zalinescu: Algorithms for Monitoring Real-time Properties

* [2] Domenico Bianculli, Carlo Ghezzi and Srdjan Krstic. Trace checking of Metric Temporal Logic with
Aggregating Modalities using MapReduce.

* [3] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdjan Krstic, and Pierluigi San Pietro. Efficient
Large-scale Trace Checking Using MapReduce

* [4] Martin Leucker, Christian Schallhart: A brief account of runtime verification

* [5] Srdjan Krstic: Trace Checking of Quantitative Properties

« [6] Martin Leucker:Teaching Runtime Verification

* [7] David A. Basin, Felix Klaedtke, Samuel Muller, Eugen Zalinescu: Monitoring Metric First-Order Temporal
Properties

* [8] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdjan Krstic, and Pierluigi San Pietro: SMT-based
checking of SOLOIST over sparse traces

* [9] Domenico Bianculli, Carlo Ghezzi, Srdan Krsti¢, and Pierluigi San Pietro: Offline trace checking of
quantitative properties of service-based applications

 [10] David Basin, Germano Caronni, Sarah Ereth, Matus Harvan, Felix Klaedtke, and Heiko Mantel: Scalable

Offline Monitoring
8l

