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System Specification

Software Verification



• High guarantees

• Undecidable

• Requires expert 
knowledge

4

Theorem proving Model checking Testing

• High guarantees

• State explosion 
problem 

• Finite models, mostly

• Low guarantees

• Scalable

• Simple



Modern Software

Decentralized

Component-based

Dynamic Interaction

Third-party functionality

Dynamic behavior



Monitoring
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System Execution trace

…

Instrumentation

Property



• Trace/History 
checking
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Offline 
Monitoring
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Online
Monitoring

• Runtime 
verification



Offline vs Online Monitoring

• Execution overhead

• Scanning direction

• Preprocessing

• Specification language semantics
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Formalizing Execution Traces:
Timed words
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Timestamps:



Example Properties
• P1:   “At any time,  the user must be logged in before executing a 

withdraw operation”;

• P2:   “ At any time, the user must be logged out by the system 5 
minutes after logging in or after his last withdraw operation”;

• P3:   “The number of withdrawal operations performed within 10 
minutes before customer logs out must be less than or equal to 3, at 
any time”;

• P4:   “It is always the case that the total amount of money withdrawn 
by any user in the last 30 days does not exceed 5000 EUR, except if 
the user has previously received a higher credit limit”.
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Formalizing Properties:
Temporal Logic

• Linear Temporal Logic

• Metric Temporal Logic

• Metric Temporal Logic with Aggregations

• Metric First-Order Temporal Logic

13



Linear Temporal Logic (LTL)
Next
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Linear Temporal Logic (LTL)
Eventually
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Linear Temporal Logic (LTL)
Globally
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Linear Temporal Logic (LTL)
Until
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Linear Temporal Logic (LTL)
Past operators
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P1:  “At any time,  the user must be logged in 
before executing a withdraw operation”

G(withdraw � ¬logOff S logIn)

withdrawlogIn
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P2:  “At any time, the user must be logged out 
by the system 5 minutes after logging in or 

after his last withdraw operation”



Metric Temporal Logic (MTL)
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P2:  “At any time, the user must be logged out 
by the system 5 minutes after logging in or 

after his last withdraw operation”

withdrawlogIn logOut

5 minutes

����

G(logIn � F[300,300] logOut � F(0,300]withdraw)

G(withdraw � G(0,300]¬withdraw � F[300,300] logOut)
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P3:  “The number of withdrawal operations 
performed within 10 minutes before customer 

logs out is less than or equal to 3, at any time”



MTL with Aggregations
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P3:  “The number of withdrawal operations 
performed within 10 minutes before customer 

logs out is less than or equal to 3, at any time”

G(logOut � C600�3 (withdraw))

withdraw logOut

10 minutes

����

withdraw
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P4:  “The amounts of money withdrawn by any 
user does not exceed 5000 EUR, except if the 
user has previously received a higher credit 

limit”.



Timed Word with Relations
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Positions:

Events:

Timestamps:

Relations:



Timed Word with Relations
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1
2

1 5 10 14 27

1 40 1 30

3 20

1

1 70

2 20

3
4

3 2
4

logIn
(user)

withdraw
(user, sum)

logOut
(user)

3 30

4 50

2 10
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P4:  “The amounts of money withdrawn by any 
user does not exceed 5000 EUR, except if the 
user has previously received a higher credit 

limit”.

G(�u.�a.(withdraw(u, a) � a � 5000 � P creditLimit(u)))



Monitoring Algorithms



LTL Monitoring Algorithm

31

FI(�)

��� � � � � � � � ��� � � � �� � � �

Reverse scanning

Incremental verdict

Eventually operator

Arbitrary nesting



MTL Monitoring Algorithm
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FI(�)

Size of the temporal interval

Queue-like data structure

Granularity of the trace

Metric Eventually operator
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MTL Monitoring Algorithm
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Distributed Monitoring
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Wikipedia Page Traffic 
Statistics Dataset

Contains 7 months of hourly page view statistics for all 
articles in Wikipedia

Size: 320 GB
Created On: June 9, 2009



DARPA Scalable Network 
Monitoring (SNM) Program Traffic
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Size: 7083.4 TB
Created On: November 12, 2009

Contains 9 days of captured network traffic
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Main Challenge
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Large traces that cannot be collected, stored 
and processed on a single machine.

Solution: Distributed Monitoring
using MapReduce
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Cut Blend

MapReduce
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map (         ,         ,         )

(         ,         ,         )
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reduce (       ,       ,       )

reduce (       ,       ,       )

reduce (       ,       ,       )
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How to use MapReduce 
for Monitoring?
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Parallelization Strategies
Splitting the formula (general, limited parallelization)

•  

•  

Splitting the trace (heuristic, high parallelization)

•  

•  
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Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting



Parallel sub-formula processing
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p q r sp

G(0,10000)

U(0,500)

∧

�

∨¬
Formula

Syntax Tree

Iterative
Trace Subsets

First position?

Trace
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p q r sp

G(0,10000)

U(0,500)

∧

�
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MAP: associate 
sub-formulae with

super-formulae 

Parallel sub-formula processing

REDUCE: monitor 
the sub-formulae

REPEAT
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Abstract. Modern, complex software systems produce a large amount of execu-

tion data, often stored in logs. These logs can be analyzed using trace checking

techniques to check whether the system complies with its requirements specifi-

cations. Often these specifications express quantitative properties of the system,

which include timing constraints as well as higher-level constraints on the occur-

rences of events, expressed using aggregate operators.

In this paper we present an algorithm that exploits the MapReduce programming

model to check specifications expressed in a metric temporal logic with aggregat-

ing modalities, over large execution traces. The algorithm exploits the structure of

the formula to parallelize the evaluation, with a significant gain in time. We report

on the evaluation of the implementation—based on the Hadoop framework—of

the proposed algorithm and comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBA), are built accord-

ing to a modular and decentralized architecture, and execute on a distributed environ-

ment. Their development and their operation depend on many stakeholders, including

the providers of various third-party services and the integrators that realize composite

applications by orchestrating third-party services. Service integrators are responsible,

to the end-users for guaranteeing an adequate level of quality of service, both in terms

of functional and non-functional requirements. This new type of software has triggered

several research efforts on the specification and verification of SBAs.

In previous work [7], some of the authors presented the results of a field study on

property specification patterns [11] used in the context of SBAs, both in industrial and

in research settings. The study identified a new set of property specification patterns

specific to service provisioning. Most of these patterns are characterized by the pres-

ence of aggregate operations on sequence of events occurring in a given time window,

such as “the average distance between pairs of events (e.g., average response time)”,

“the number of events in a given time window”, “the average (or maximum) number

of events in a certain time interval over a certain time window”. This study led to the

definition of SOLOIST [8] (SpecificatiOn Language fOr servIce compoSitions inTerac-

tions), an extension of metric temporal logic with new temporal modalities that support

aggregate operations on events occurring in a given time window. The new temporal

SEFM 2014



Health Insurance Portability 
and Accountability Act of 1996
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“Retain the documentation […] for 
6 years from the date of its creation 
or the date when it last was in effect, 

whichever is later”



Trace Checking Temporal 
operators

51

FI(�)



Trace Checking Temporal 
operators
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FI(�)



Trace Checking Temporal 
operators

53

FI(�)

OutOfMemoryException!



Parallelization Strategies
Splitting the formula 

•  

•  

Splitting the trace

•  

•  
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Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting (vertical)

Data-wise trace splitting (horizontal)
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( )

F(0,10000]( )�

0 10000

Temporal operator decomposition
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( )](

F(0,5000]( ) F(0,5000)( )� �

F(0,10000)( ) � F(0,5000]( ) � F=5000(F(0,5000)( ))� � �

0 10000

Temporal operator decomposition
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Equivalent?

F(0,10000)( ) � F(0,5000]( ) � F=5000(F(0,5000)( ))� � �

Temporal operator decomposition

Yes*

* if we slightly tweak the MTL semantics 



Temporal operator decomposition

1. Analyze the temporal operators in the formula

2. If all intervals are small enough*, apply the parallel sub-
formula processing

3. Otherwise, decompose the formula to be small enough* 
and then apply the parallel sub-formula processing
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Parallelization Strategies
Splitting the formula 

•  

•  

•  

•  
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Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting

Splitting the trace
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Splitting the trace

Goal: Split the trace T based on a particular formula Φ into
trace slices T1, T2, … Tk such that:

if  T ⊨ Φ then for all ∀i.Ti ⊨ Φ 

if  T ⊭ Φ then there exists i such that Ti ⊭ Φ 



Parallelization Strategies
Splitting the formula 

•  

•  

•  

•  

62

Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting

Splitting the trace



Time-wise trace splitting
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Time-wise trace splitting
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Time-wise trace splitting
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G[0,3](p)

pp

q
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Time-wise trace splitting
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Time-wise trace splitting
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Splitting: The Temporal Structure 

Φ range(Φ)

(p ⋀ q) U[2,4] (F[1,3]p)
[0,0] [0,0] [0,0]

[0,3] [0,7][0,0] 
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Splitting: The Temporal Structure 

𝜏b - 𝜏c = range(Φ)

𝜏a 𝜏b

𝜏c … 𝜏d

…



Parallelization Strategies
Splitting the formula 

•  

•  

Splitting the trace

•  

•  
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Parallel sub-formula processing

Temporal operator decomposition

Time-wise trace splitting

Data-wise trace splitting



Data-wise trace splitting
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1 75 8 10 14

71

r1(t1,t2)

r2(t1,t2)



Data-wise trace splitting
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1 75 8 10 14

r1(t1,t2)

r2(t1,t2)

1 75 8 10 14

r1(t1,t2)

r2(t1,t2)



Example
• Split log based on parameters of log events

• Formula:

• Slices cover different reports:
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G(�r.(publish(r) � P(approve(u))))



Example
• Split log based on parameters of log events

• Formula:

• Slices cover different reports:

74

G(�r.(publish(r) � P(approve(u))))



• What about these formulae?

75

Example

G(�r.(publish(r) � ¬�r�.(P publish(r�) � r� > r)))

• Bottom line: it’s a heuristic

G(�r.(publish(r) � F publish(summary)))



RV 2014



Summary
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Open problems

• Combine the orthogonal parallelization strategies

• Provide a general distributed framework for online 
monitoring

• Generalize the monitoring approach: given a formula, the 
least general (hence, the least complex) algorithm is 
used to monitor it
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