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Abstract: The research presents the experimental performance of three different 
building-integrated organic semitransparent photovoltaic technologies (A: developed in 
the present study; B and C: commercial modules). Spectral transmittance and electrical 
measurements have been conducted in order to determine the characteristics of the 
modules for building integration and electric generation purposes. Continuous 
monitoring of the modules working at maximum power point has been performed over 
sunny days, whereas in other conditions, the modules were kept in open-circuit. 
Regarding the transmittance, technology A outperforms B and C, but concerning 
electrical efficiency, C is the one registering the best results in terms of degradation, B 
is the one achieving the highest efficiencies and A is in the middle (it presents similar 
efficiency results to C and similar efficiency reduction to B). 

1. Introduction 

In conventional crystalline photovoltaic installations, the solar cells are responsible for 
the highest cost, not only from economical point of view but also from environmental 
perspective. In this regard, organic photovoltaic systems (OPVs) have shown an 
increasing interest as a cost-effective technology in recent years (Yu et al., 2014). In 
addition, resources and processes involved in OPV manufacturing and recycling are 
expected to demand less energy inputs and in this way, OPVs are expected to be more 
environmentally friendly in comparison to other types of PV systems which include 
cells with high environmental impact. Moreover, OPVs can be fabricated as thin films, 
lightweight and flexible modules, widening the possible applications in comparison 
with conventional silicon PV panels. 

Concerning electrical performance, remarkable advances have been reported by 
utilizing bulk heterojunction organic devices that combine donor and acceptor 
substances in the blend (Bristow and Kettle, 2015). At present, the efficiency record of 
11.7% is held by a team from the Hong Kong University of Science and Technology 
(Zhao et al., 2016). This impressive value, even to be very high in terms of OPVs, is 
quite far from the percentages obtained by silicone cells (above 20%). Although the 
efficiency trend is quite optimistic, stability and large-scale production issues are not as 
advanced as the efficiencies (Wang et al., 2012). Currently, an important research effort 
is conducted regarding stability and degradation of organic cells (Ding et al., 2016; 
Hansson et al., 2016). Degradation mechanisms can be influenced by several factors 
such as oxidation or hydration/hydrolysis that affect the active layer and the electrodes, 
diffusion of the electrode materials towards the active layer, etc., and usually is the 
combination and interrelation between those factors which arise difficulties in 
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regarding the spectral content transmitted. Specifically for the photopic range, the shape 
of the spectral transmission between the initial measurements and the final 
measurements is very similar and the variations seem to be negligible. As it can be 
appreciated in Fig. 3, in the bandwidth 400-700 nm the performance of both 
technologies is quite stable and lower than that observed from 700 nm on. Conversely, 
for module C the spectrum presents a quite flat shape for all the range. 

 
Fig. 3. Mean spectral transmittances of the modules at the end of the monitoring period. 

Table 1 includes the mean transmittances of all the modules A, B and C for two 
different spectral ranges: the first refers to the photopic range (400-700 nm) and the 
second has been extended till 800 nm considering all the visible bandwidth. Concerning 
the transmittances, these are reported for two cases: with double glazing (߬̅) and without 
double glazing (߬̅′). Also the subscripts i and f denote the values measured at the 
beginning and at the end of the experiments, respectively. From the data it can be 
pointed out that small variations of the spectral transmittance are registered over the 
monitoring and that technology A presents higher transmittances (in both ranges 
considered) than the commercial technologies B and C. Specifically for 400-800 nm 
bandwidth, technology A results in transmittances (߬̅′) of 12.8% and 12.5% at the 
beginning and at the end of the time period of the experiments whereas technology B 
values are 11.5% and 10.5%, analogously. In the case of C, the transmittance decreases 
in 3.6% points for 400-800 nm interval, but for the range 400-700 nm the values 
observed are almost equal between the beginning and the end time period (8.2% and 
7.8%). 

Table 1. Spectral transmission values. 
Tech. ૌതܑ 400-700 

(%) 
ૌതܑ′400-700 

(%) 
ૌത700-400  

(%) 
ૌത700-400′ 

(%) 
ૌതܑ 400-800 

(%) 
ૌതܑ′400-800 

(%) 
ૌത800-400  

(%) 
ૌത800-400′  

(%) 
A1 4.3 4.9 5.4 6.2 9.7 11.2 9.6 10.9 

A2 8.1 9.3 6.7 7.8 12.4 14.3 9.4 14.2 

B1 6.0 7.0 5.1 5.9 10.5 12.2 9.1 10.6 

B2 5.5 6.4 4.7 5.4 9.4 10.9 8.9 10.4 

C 6.9 8.2 6.7 7.8 9.5 11.2 6.4 7.6 

 

3.2 Electrical performance 

In the present subsection, the J-V characteristic parameters of the modules are analyzed 
at the beginning of the monitoring period. The modules have been installed on a two-



axis tracker to determine their electrical parameters under stable solar irradiance 
conditions. In the case of devices developed in project (A), two determinations have 
been included to discern between (1) behavior after continuous sunlight exposure of ten 
minutes (in the following notation, it is indicated as +10 min) and (2) measured at the 
initial time of the exposure (light soaking effects). The measurement conditions, 
including global irradiance (Glob), direct irradiance (Dir) and the module temperature 
(T), are included in Table 2 along  with a summary of the main electrical parameters 
determined (Jsc: short-circuit current density, Voc: open-circuit potential, FF: fill factor 
and Ef: efficiency). 
 

Table 2. Summary of the main electrical parameter and the boundary conditions. 
Tech. T (ºC) Glob (W/m2) Dir (W/m2) Jsc (mA/cm2) Voc (V) FF (%) Ef (%) 

A1 23.22 810 682 0.37 8.75 54.67 2.18 

A1(+10min) 24.54 834 705 0.38 8.75 54.82 2.19 

A2 21.21 783 672 0.34 8.84 52.92 2.03 

A2(+10min) 23.81 802 675 0.35 8.90 52.99 2.06 

B1 29.08 1007 875 0.99 8.12 59.19 4.72 

B2 29.11 1007 874 1.00 7.59 57.57 4.34 

C 30.93 1012 889 0.19 39.28 44.32 3.27 

 
Technology A has been fabricated by utilizing a novel production system based on 
spraying, which is less expensive and easier than those relying on vacuum processes. 
On the contrary, as it can be noticed in Table 2, the efficiency values achieved by 
technology A are half of the values of the commercial technology B. The main factor 
which leads to this lower efficiency is the fact that the organic tandem photogenerates 
half of the short circuit current density produced by B modules (it should be considered 
that the outdoor irradiance is 25% higher for technology B; thus, assuming a direct 
proportionality between the irradiance and the short circuit current, the values of A 
modules should be near 0.45 mA/cm2). Nonetheless, the commercial technology C 
outperforms technology A due to the high potential achieved since both the short-circuit 
current density and the fill factor are lower than for the cases of A and B. 
 
3.3 Continuous monitoring 
Once the modules were initially characterized, they were installed in the façade-like 
outdoor experimental testing unit (described in section 2) to start the continuous daily 
monitoring for sunny days. When the days were cloudy, during the weekends and on 
holidays (2 weeks in August) the modules were kept in open circuit conditions. Fig. 4 
plots the global irradiance evolution throughout the monitoring, where it is possible to 
notice the increase of irradiance due to the seasonal lower solar altitude effect 
approaching the winter solstice.  
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400-800 nm) than the commercial technologies B and C. Specifically for 400-800 nm 
bandwidth, technology A results in 12.8% and 12.5% at the beginning and at the end of 
the time period of the experiments whereas technology B values are 11.5% and 10.5%, 
analogously. In the case of C, the transmittance decreases in 3.6% points for 400-800 
nm interval, but for the range 400-700 nm the values observed are almost equal between 
the beginning and the end time period (8.2% and 7.8%). 

The electrical efficiency values achieved by technology A are half of the values of the 
commercial technology B. The main factor which leads to this lower efficiency is the 
fact that the organic tandem photogenerates half of the short-circuit current density of B 
modules. Nonetheless, the commercial technology C outperforms technology A due to 
the high potential achieved as both the short-circuit current density and the fill factor are 
lower than for A and B. The highest efficiency reduction is suffered by technology A 
whereas this reduction is observed to decrease with much lower rhythm at the second 
half of the monitoring. Also the calculated differences are not far from those reported 
for technology B modules. Module C is the one achieving the lowest efficiency 
reduction (3.6%).  

Acknowledgments: The authors would like to acknowledge financial support from 
European Commission 7th Framework Programme (FP7-NMP-2013-SMALL-7). 

7. References 

Bristow N.,Kettle J., Outdoor performance of organic photovoltaics: Diurnal analysis, 
dependence on temperature, irradiance, and degradation. Journal of Renewable and 
Sustainable Energy, 2015;7(1). 

Ding Z., Kettle J., Horie M., Chang S.W., Smith G.C., Shames A.I., et al., . Efficient 
solar cells are more stable: The impact of polymer molecular weight on performance of 
organic photovoltaics. Journal of Materials Chemistry A, 2016;4:7274-7280.  

Grossiord N.,  Kroon J.M., Andriessen R., Blom P.W.M., Degradation mechanisms in 
organic photovoltaic devices. Organic Electronics, 2012;13(3):432-456. 

Hansson R., Lindqvist C., Ericsson L.K.E., Opitz A., Wang E.,  Moons E., Photo-
degradation in air of the active layer components in a thiophene-quinoxaline copolymer: 
fullerene solar cell. Physical Chemistry Chemical Physics, 2016;18:11132-11138.  

Judd D. B. (1951), Report of U.S. secretariat committee on colorimetry and artificial 
daylight, proceedings of the twelfth session of the CIE, Stockholm (pp. 11) Paris: 
Bureau Central de la CIE. 

Mulligan C.J., Wilson M., Bryant G.,Vaughan B.,  Zhou X., Belcher W.J., Dastoor P.C., 
A projection of commercial-scale organic photovoltaic module costs. Solar Energy 
Materials and Solar Cells, 2014;120(Part A):9-17. 

Solprocel (2016),www.solprocel.eu 

Wang Y., Wei W., Liu X., Gu, Y. Research progress on polymer heterojunction solar 
cells. Solar Energy Materials and Solar Cells, 2012;98:129-145. 

Yu J., Zheng Y., Huang J., Towards high performance organic photovoltaic cells: A 
review of recent development in organic photovoltaics. Polymers, 2014;6: 2473–2509. 

Zhao J., Li Y., Yang G., Jiang K., Lin H.,  Ade H.,  et al., Efficient organic solar cells 
processed from hydrocarbon solvents. Nature Energy 1, Article number: 15027 (2016). 


