

Building Integration of Solar Thermal Systems – TU1205 – BISTS

Thermal Analysis of Solar Collectors

Soteris A. Kalogirou

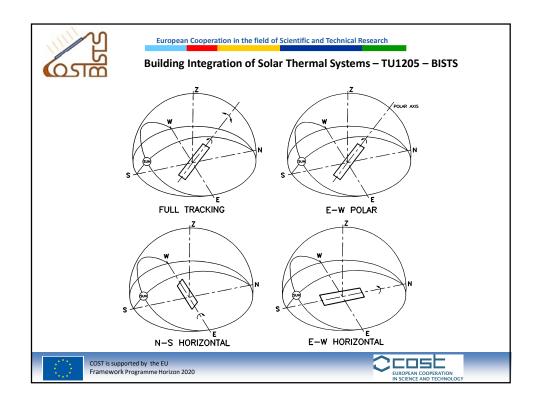
Cyprus University of Technology Limassol, Cyprus

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Contents

- Types of collectors
 - Stationary
 - Sun tracking
- Thermal analysis of collectors
 - Flat-plate collectors
 - Concentrating collectors
- Performance of solar collectors


Building Integration of Solar Thermal Systems – TU1205 – BISTS

Types of solar collectors

Motion	Collector type	Absorber type	Concentration ratio	Indicative temperature range (°C)
Stationary	Flat plate collector (FPC)	Flat	1	30-80
	Evacuated tube collector (ETC)	Flat	1	50-200
	Compound parabolic collector (CPC)	T 1 1	1-5	60-240
Single-axis tracking		Tubular	5-15	60-300
	Linear Fresnel reflector (LFR)	Tubular	10-40	60-250
	Parabolic trough collector (PTC)	Tubular	15-45	60-300
	Cylindrical trough collector (CTC)	Tubular	10-50	60-300
Two-axes tracking	Parabolic dish reflector (PDR)	Point	100-1000	100-500
	Heliostat field collector (HFC)	Point	100-1500	150-2000

COST is supported by the EU
Framework Programme Horizon 2020

Building Integration of Solar Thermal Systems – TU1205 – BISTS

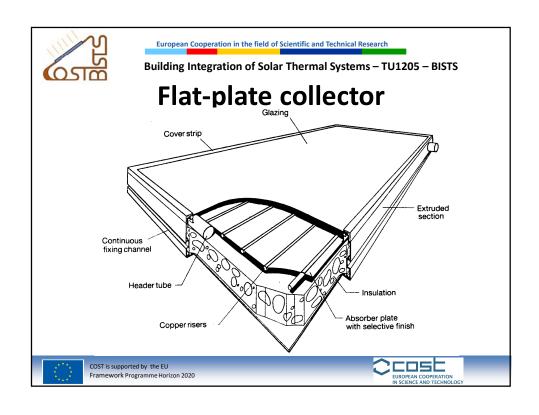
Comparison of energy absorbed for various modes of tracking

Tracking mode	Solar energy (kWh/m²)			Percent to full tracking		
Tracking mode	Е	SS	WS	Е	SS	WS
Full tracking	8.43	10.60	5.70	100.0	100.0	100.0
E-W Polar	8.43	9.73	5.23	100.0	91.7	91.7
N-S Horizontal	6.22	7.85	4.91	73.8	74.0	86.2
E-W Horizontal	7.51	10.36	4.47	89.1	97.7	60.9

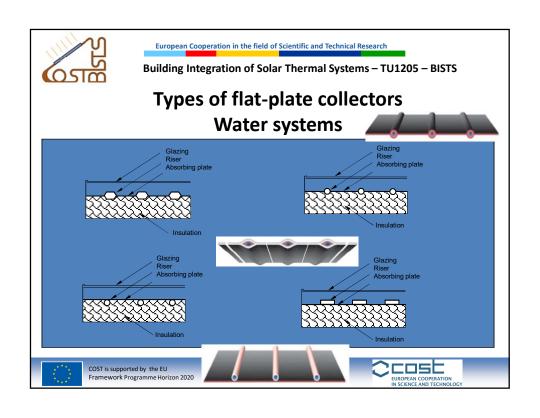
Note: E - Equinoxes, SS - Summer Solstice, WS - Winter Solstice

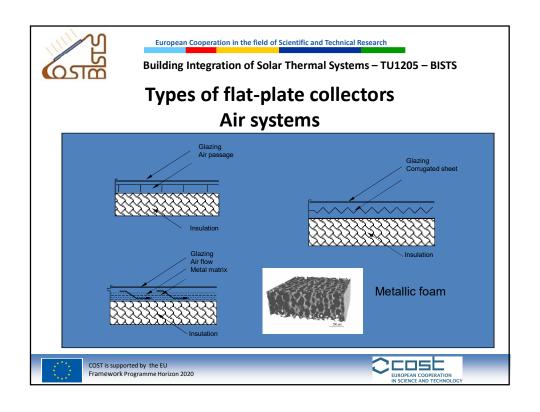
COST is supported by the EU Framework Programme Horizon 20.

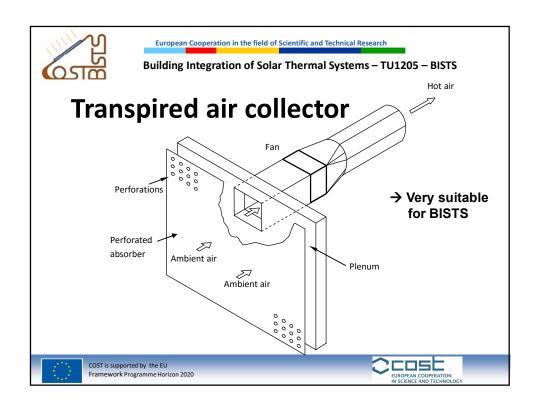
European Cooperation in the field of Scientific and Technical Research

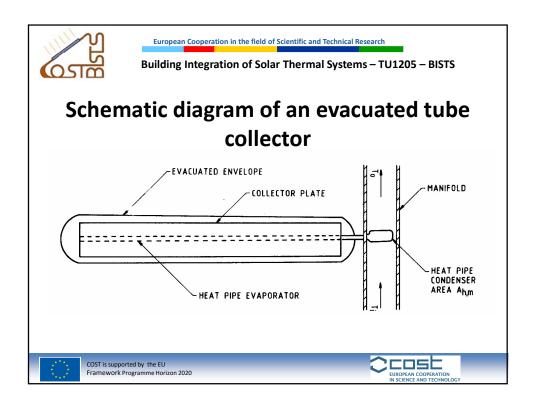

Building Integration of Solar Thermal Systems - TU1205 - BISTS

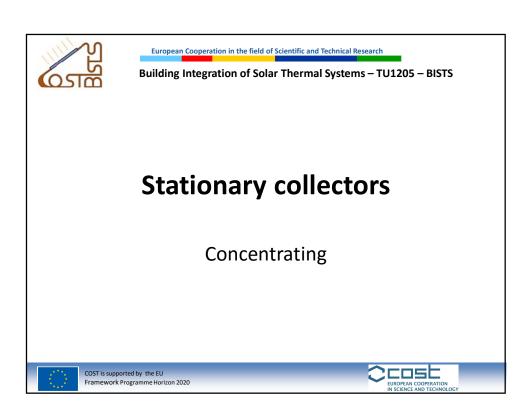
Stationary collectors

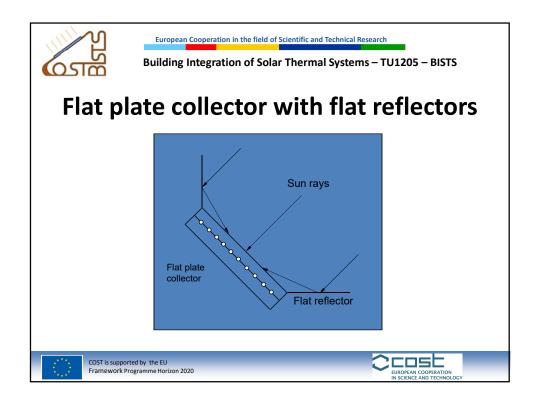

No concentration

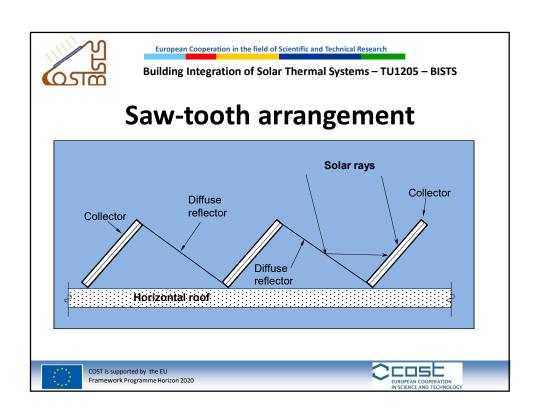


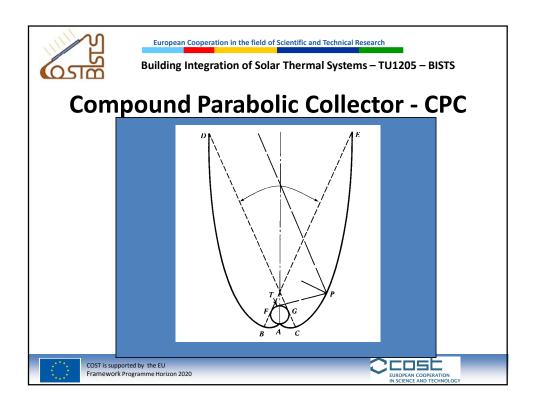


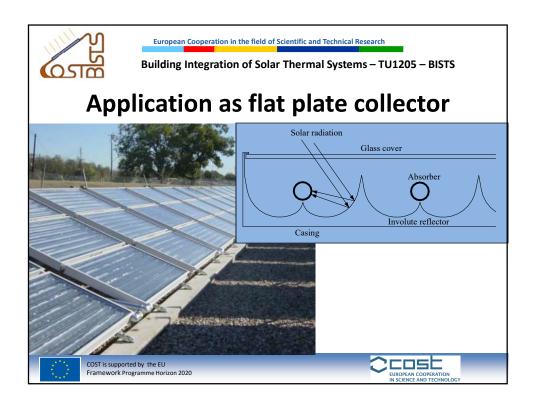


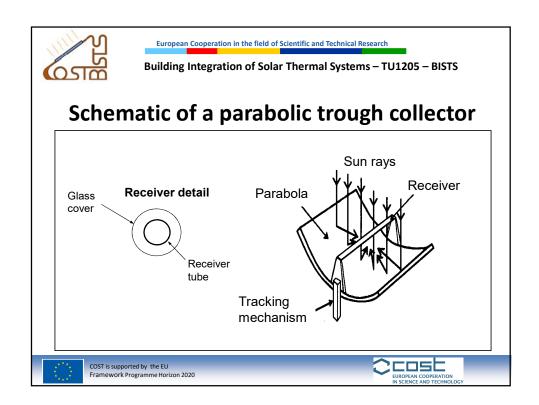


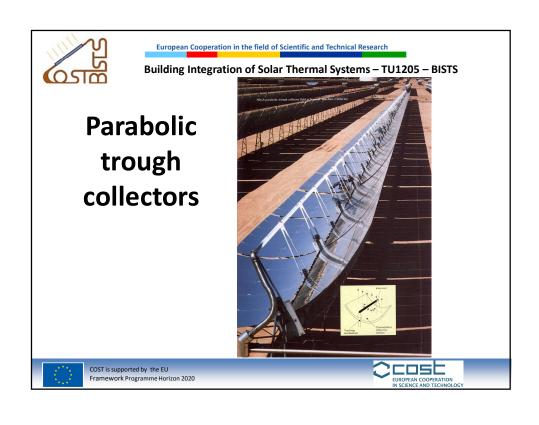


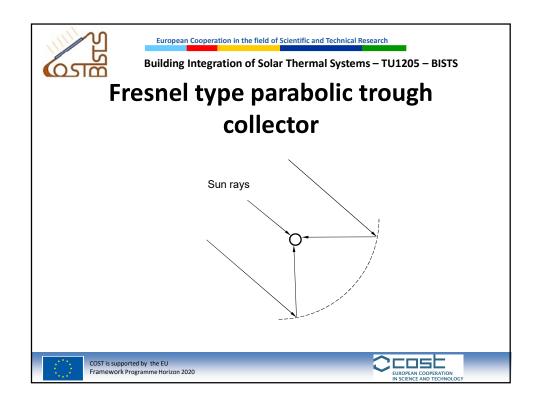


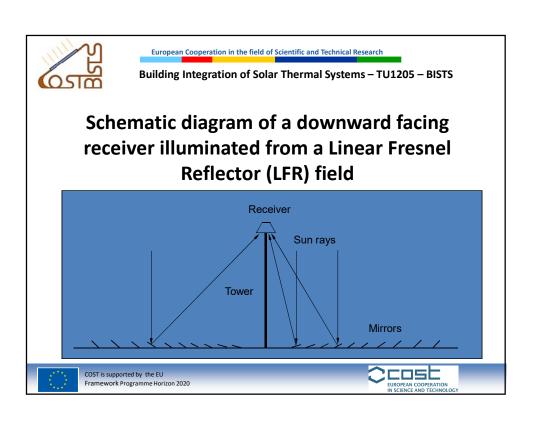


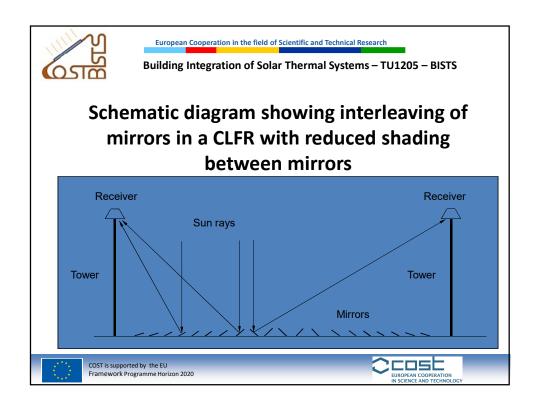


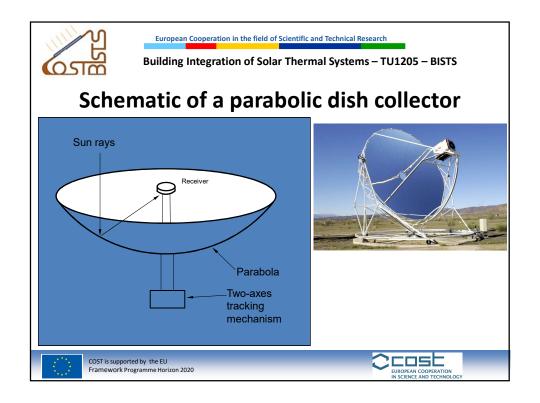

Building Integration of Solar Thermal Systems – TU1205 – BISTS

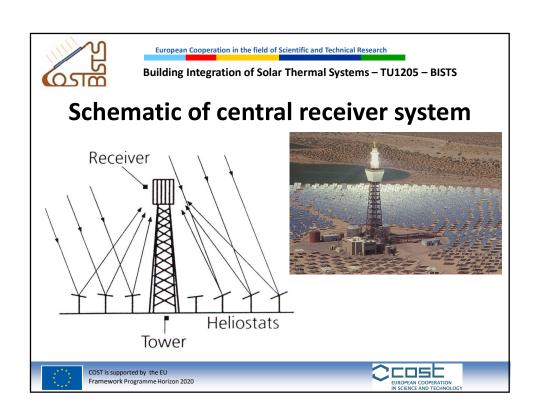

Sun tracking collectors

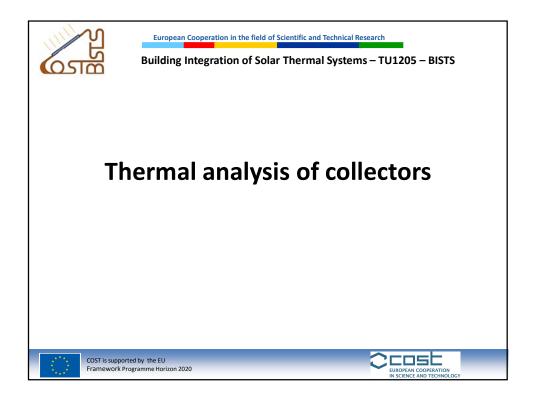

Concentrating

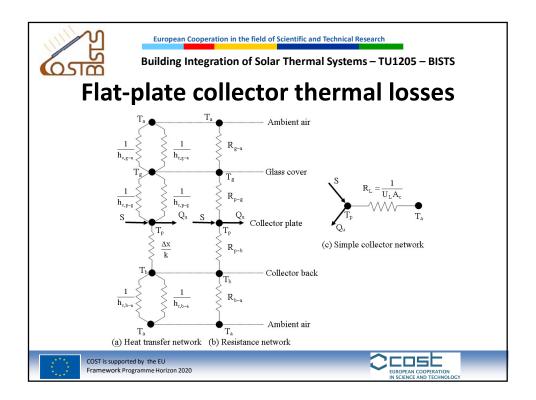












Building Integration of Solar Thermal Systems - TU1205 - BISTS

Flat-plate collector thermal losses

• From the simple thermal network the collector thermal losses are:

$$Q_{loss} = \frac{T_p - T_a}{R_L} = U_L A_c (T_p - T_a)$$

- The total heat loss coefficient \textbf{U}_{L} is given by: $U_{\text{L}} = U_{\text{t}} + U_{\text{b}} + U_{\text{e}} \qquad \mbox{\tiny (top, back, edges)}$
- The various relations can be obtained from basic heat transfer analysis

Building Integration of Solar Thermal Systems – TU1205 – BISTS

Empirical relation

• This relation gives adequate accuracy:

$$U_{t} = \frac{1}{\frac{N_{g}}{\left(\frac{T_{p} - T_{a}}{N_{g} + f}\right)^{0.33} + \frac{1}{h_{w}}}} + \frac{\sigma\left(T_{p}^{2} + T_{a}^{2}\right)\left(T_{p} + T_{a}\right)}{\frac{1}{\epsilon_{p} + 0.05N_{g}\left(1 - \epsilon_{p}\right)} + \frac{2N_{g} + f - 1}{\epsilon_{g}} - N_{g}}$$

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

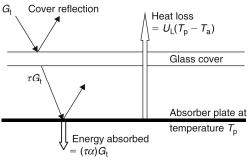
· Where:

$$f = \! \left(1 - 0.04 h_{\rm w} + 0.0005 h_{\rm w}^2\right) \! \left(1 + 0.091 N_{\rm g}\right)$$

$$C = 365.9 \left(1 - 0.00883\beta + 0.0001298\beta^2\right)$$

$$h_{\rm w} = \frac{8.6V^{0.6}}{L^{0.4}}$$

 $\bullet\,\,$ The minimum value of wind heat loss coefficient, h_w for still air is 5 W/m²K, so if above equation gives a lower value we use this value as a minimum.



Building Integration of Solar Thermal Systems - TU1205 - BISTS

Useful energy collected from a flat plate collector

• In the form of equation this is given by:

$$Q_{u} = A_{c} \left\lceil G_{t}(\tau \alpha) - U_{L} \left(T_{p} - T_{a} \right) \right\rceil = \dot{m} c_{p} \left[T_{o} - T_{i} \right]$$

COST is supported by the EU ramework Programme Horizon 2020

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Useful energy collected from a collector-Flat plate

· General formula:

$$Q_{u} = A_{c} \left[G_{t}(\tau \alpha) - U_{L} \left(T_{p} - T_{a} \right) \right] = mc_{p} \left[T_{o} - T_{i} \right]$$

 by substituting inlet fluid temperature (T_i) for the average plate temperature (T_p):

$$Q_{u} = A_{c}F_{R} \left[G_{t}(\tau \alpha) - U_{L} \left(T_{i} - T_{a} \right) \right]$$

 $-% \left({{\mathbf{F}}_{R}} \right)$ — Where ${{\mathbf{F}}_{R}}$ is the heat removal factor

Building Integration of Solar Thermal Systems – TU1205 – BISTS

Heat removal factor

- Heat removal factor represents the ratio of the actual useful energy gain that would result if the collector-absorbing surface had been at the local fluid temperature.
- Equation:

$$F_{R} = \frac{\dot{m}c_{p}}{A_{c}U_{L}} \left(1 - Exp \left[-\frac{U_{L}F'A_{c}}{\dot{m}c_{p}} \right] \right)$$

F'=collector efficiency factor

COST is supported by the EU
Framework Programme Horizon 2020

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Collector efficiency

 Finally, the collector efficiency can be obtained by dividing Q_u by (G_t A_c). Therefore:

$$\eta = F_{R} \left[(\tau \alpha) - \frac{U_{L}(T_{i} - T_{a})}{G_{t}} \right]$$

COST is supported by the EU Framework Programme Horizon 2020

Building Integration of Solar Thermal Systems – TU1205 – BISTS

Concentration ratio

- The concentration ratio (C) is defined as the ratio of the aperture area to the receiver/absorber area, i.e.: A_a
 - $C = \frac{A_{\ell}}{A_{\ell}}$
- For flat-plate collectors with no reflectors, C=1. For concentrators C is always greater than 1. For a single axis tracking collector the maximum possible concentration is given by:

$$C_{\max} = \frac{1}{\sin(\theta_m)}$$

• and for two-axes tracking collector:

$$C_{\max} = \frac{1}{\sin^2(\theta_m)}$$

where θ_{m} is the half acceptance angle limited by the size of the sun's disk, small scale errors and irregularities of the reflector surface and tracking errors.

COST is supported by the EU

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Maximum concentration

- For a perfect collector and tracking system C_{max} depends only on the sun's disk which has a width of 0.53° (32'). Therefore:
- For single axis tracking:

$$C_{max} = 1/\sin(16') = 216$$

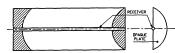
• For full tracking:

$$C_{max} = 1/\sin^2(16') = 46,747$$

Building Integration of Solar Thermal Systems – TU1205 – BISTS

Concentrating collectors

• The useful energy delivered from a concentrator is:


$$Q_{u} = G_{b} \eta_{o} A_{a} - A_{r} U_{L} \left(T_{r} - T_{a} \right)$$

• Where n_o is the optical efficiency given by:

$$\eta_o = \rho \tau \alpha \gamma \left[\left(1 - A_f \tan(\theta) \right) \cos(\theta) \right]$$

• And A_f is the geometric factor given by:

$$A_f = \frac{2}{3}W_a h_p + fW_a \left[1 + \frac{W_a^2}{48f^2} \right]$$

Framework Programme Horizon 2020

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Concentrating collectors efficiency

• Similarly as for the flat-plate collector the heat removal factor can be used:

$$Q_{u} = F_{R} \left[G_{b} \eta_{o} A_{a} - A_{r} U_{L} \left(T_{i} - T_{a} \right) \right]$$

 And the collector efficiency can be obtained by dividing Q_u by (G_bA_a):

$$n = F_R \left[\eta_o - U_L \left(\frac{T_i - T_a}{G_b C} \right) \right]$$

COST is supported by the EU

Building Integration of Solar Thermal Systems – TU1205 – BISTS

PERFORMANCE OF SOLAR COLLECTORS

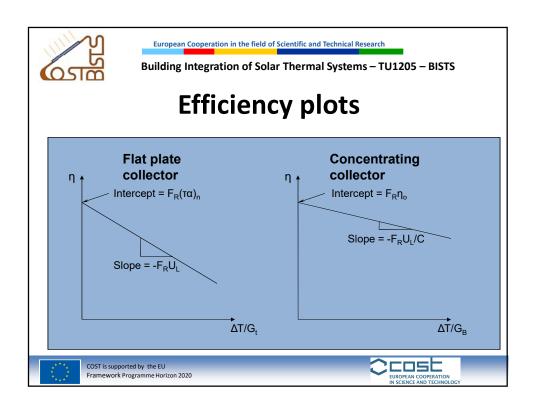
- The thermal performance of the solar collector is determined by obtaining:
 - Values of instantaneous efficiency for different combinations of incident radiation, ambient temperature, and inlet fluid temperature.
 - The variation of steady-state thermal efficiency with incident angles between the direct beam and the normal to collector aperture area at various sun and collector positions (incidence angle modifier).
 - The transient thermal response characteristics of the collector (time constant).

European Cooperation in the field of Scientific and Technical Research

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Collector efficiency

• For flat-plate collectors:


$$\eta = F_R(\tau \alpha) - F_R U_L \left(\frac{T_i - T_a}{G_t} \right)$$

• For concentrating collectors:

$$\eta = F_R \eta_o - \frac{F_R U_L}{C} \frac{(T_i - T_a)}{G_b}$$

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Incidence Angle Modifier Flat plate collectors

- The above performance equations assume that the sun is perpendicular to the plane of the collector, which rarely occurs.
- For the glass cover plates of a flat-plate collector, specular reflection of radiation occurs on the collector glazing thereby reducing the $(\tau\alpha)$ product.
- The incident angle modifier is defined as the ratio of $\tau\alpha$ at some incident angle θ to $(\tau\alpha)$ at normal radiation $(\tau\alpha)_n$:

$$K_{\theta} = \frac{(\tau \alpha)}{(\tau \alpha)_{n}} = 1 - b_{o} \left(\frac{1}{\cos(\theta)} - 1 \right)$$

Building Integration of Solar Thermal Systems – TU1205 – BISTS

Efficiency equation by considering incidence angle modifier

 With the incidence angle modifier the collector efficiency equation can be modified as:

$$\eta = F_{R} \left[(\tau \alpha)_{n} K_{\theta} - U_{L} \frac{(T_{i} - T_{a})}{G_{t}} \right]$$

European Cooperation in the field of Scientific and Technical Research

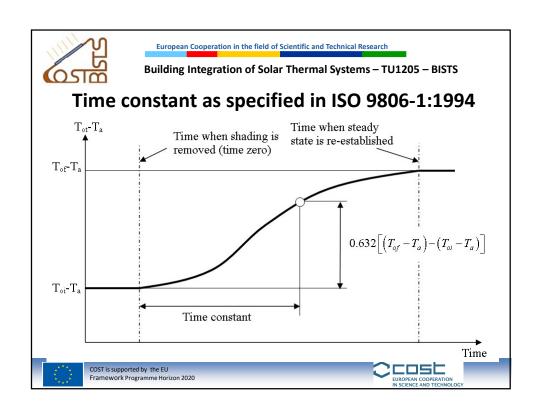
Building Integration of Solar Thermal Systems - TU1205 - BISTS

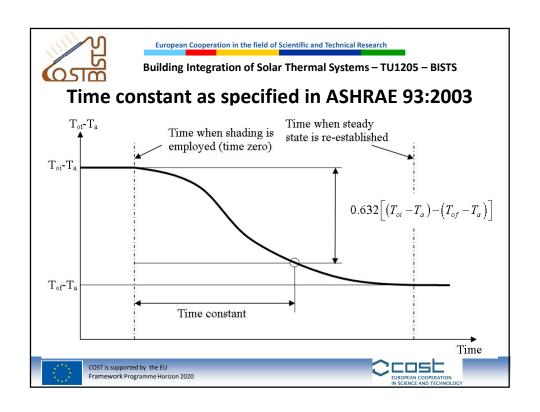
Collector Time Constant

- A last aspect of collector testing is the determination of the heat capacity of a collector in terms of the time constant.
- Whenever transient conditions exist, the
 performance equations given before do not govern
 the thermal performance of the collector since part
 of the absorbed solar energy is used for heating up
 the collector and its components.

Building Integration of Solar Thermal Systems - TU1205 - BISTS

Collector time constant


The time constant of a collector is the time required for the fluid leaving the collector to reach 63% of its ultimate steady value after a step change in incident radiation. The collector time constant is a measure of the time required for the following relationship to apply:


$$\frac{T_{ot} - T_i}{T_{oi} - T_i} = \frac{1}{e} = 0.368$$


- T_{ot} = Collector outlet water temperature after time t (° C)
- Total Collector outlet initial water temperature (° C)
 T_i = Collector inlet water temperature (° C)
- The procedure for performing this test is to operate the collector with the fluid inlet temperature maintained at the ambient temperature.
- The incident solar energy is then abruptly reduced to zero by shielding a flatplate collector.
- The temperatures of the transfer fluid are continuously monitored as a function of time until above equation is satisfied.

