

8

European Coopera	ation in the field of Scientif	rmal Systems – TU1205 –	BISTS
Pollution	is not a	always disa	strous!
Plant dry weight (biomas	ss) responses to at atmospheric CO2	mospheric CO2 enrichme concentration.	nt, for 600 ppm
8			
Cereals		Vegetables	
Barley	40%	Cabbages	29%
Rice	36%	Tomatoes	32%
Wheat	33%	Cucumbers	45%
Legumes		Other	
Beans	64%	Coffee	175%
Peas	33%	Olive trees	36%
Soybeans	46%	Citrus	30-60%
Roots and tubers			
Carrots	78%		
Potatoes	30%		
COST is supported by the ELLBID Framework Programme		ESF provid	des the COST Office

European Cooperation i Building Integratio	n the field of Scientific a on of Solar Thern Environment-Properties	nal Systems – T -d_1220.html	U1205 – BISTS
Refrigerant	Ozone Depletion Potential (ODP)	Global Warming Potential (<i>GWP</i>)	•Global Warming Potential (<i>GWP</i>) is a measure of how
R-11 Trichlorofluoromethane	1.0	4000	much a given mass of a gas
R-12 Dichlorodifluoromethane	1.0	2400	
R-13 B1 Bromotrifluoromethane	10		contributes to global warming.
R-22 Chlorodifluoromethane	0.05	1700	GWP is a relative scale which
R-32 Difluoromethane	0	650	compares the amount of heat
R-113 Trichlorotrifluoroethane	0.8	4800	
R-114 Dichlorotetrafluoroethane	1.0	3.9	trapped by greenhouse gas to
R-123 Dichlorotrifluoroethane	0.02	0.02	the amount of heat trapped in
R-124 Chlorotetrafluoroethane	0.02	620	the same mass of Carbon
R-125 Pentafluoroethane	0	3400	Disvide The CM/D of Carbon
R-134a Tetrafluoroethane	0	1300	Dioxide. The GWP of Carbon
R-143a Trifluoroethane	0	4300	Dioxide is by definition 1 and is
R-152a Difluoroethane	0	120	the reference. Be aware that
R-245a Pentafluoropropane	0		CW/Ds are highly controversial
R-401A (53% R-22, 34% R-124, 13% R-152a)	0.37	1100	GWPS are nignly controversial.
R-401B (61% R-22, 28% R-124, 11% R-152a)	0.04	1200	
R-402A (38% R-22, 60% R-125, 2% R-290)	0.02	2600	•Ozone Depletion Potential
R-404A (44% R-125, 52% R-143a, R-134a)	0	3300	
R-407A (20% R-32, 40% R-125, 40% R-134a)	0	2000	(ODP) of a chemical
R-407C (23% R-32, 25% R-125, 52% R-134a)	0	1600	compound is the relative
R-502 (48.8% R-22, 51.2% R-115)	0.283	4.1	amount of degradation it can
R-507 (45% R-125, 55% R-143)	0	3300	
R-717 Ammonia - NH ₃	0	0	cause to the ozone layer
R-718 Water - H ₂ 0	0		
R-729 Air	0		ESE provides the COST Office
R-744 Carbon Dioxide - CO ₂		1*	through an EC contract POLINDATION

-	Estimated	Estimated Clabel Wayming Detentials *							
Compound	Estimated Atmospheric Lifetime (years)	Global Warming Potentials * (at time horizons of) 20 years 100 years 500 years			Source				
CFC-11	50±5	5000	4000	1400	(b)				
CFC-12	102	7900	8500	4200	(b)				
CFC-113	85	5000	5000	2300	(b)				
CFC-114	300	6900	9300	8300	(b)				
CFC-115	1700	6200	9300	13000	(b)				
HCFC-22	13.3	4300	1500	520	(b)				
HCFC-123	1.4	300	93	29	(b)				
HCFC-124	5.9	1500	480	150	(b)				
HCFC-141b	9.4	1800	630	200	(b)				
HCFC-142b	19.5	4200	2000	630	(b)				
HCFC-225ca	2.5	550	170	52	(b)				
HCFC-225cb	6.6	1700	530	170	(b)				
HFC-23	264	9100	11700	9800	(c)				
HFC-32	5.6	2100	650	200	(c)				
HFC-43-10mee	17.1	3000	1300	400	(c)				
HFC-125	32.6	4600	2800	920					
HFC-134a	14.0	5000	3800	1400					
HEC 152a	40.5	460	140	1400					
HEC-227ea	36.5	4300	2900	950					
HEC-236fa	209	5100	6300	4700					
HFC-245ca	6.6	1800	560	170	(c)				
Methane	12.2±3	56	21	6.5	(c)				
NMHCs **		31	11	6	(a)				
HFC-134a HFC-143a HFC-152a HFC-227ea HFC-227ea HFC-245ca Methane NMHCs ** * GWP values are uncertainty is D2	14.6 48.3 1.5 209 6.6 12.2±3 -	3400 5000 460 4300 5100 1800 56 31 e GWPs for Co	1300 3800 140 2900 6300 560 21 11 D2 at each time	420 1400 42 950 4700 170 6.5 6 horizon; typica	(c) (c) (c) (c) (c) (c) (c) (a)				

