

1

Scope Norm/ Certificate	liquid-heating collectors	PVT collectors	air-heating collectors	concentrating collectors
EN 12975-1,2:2006- A1:2011	*	¥	×	×
ISO 9806-1:1994 a. -2,3:1995	×	×	×	×
EN ISO 9806:2014	~	×	×	۲
Q-Mark*	~		~	×
SKM	~	¥	~	×
SRCC	*	×	~	¥
hEN 12975-1:2014*	~	۲	~	×
CE (to CPR)	~	۲	~	۲

Relevant Test Standards for Solar Systems	
6 Pautholer SE	Fraunhofer

ISO/FDIS 9806:2013(E) and EN 12975-2:2006-A1:2012 Scope (1)

This International Standard specifies test methods for assessing the durability, reliability and safety for fluid heating collectors.

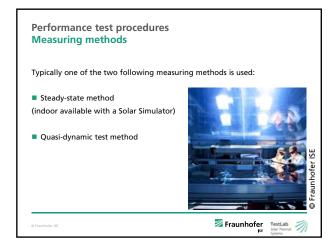
This International Standard also includes test methods for the thermal performance characterization of fluid heating collectors, namely steady-state and quasi-dynamic thermal performance of glazed and unglazed liquid heating solar collectors and steady-state thermal performance of glazed and unglazed air heating solar collectors (open to ambient as well as closed loop).

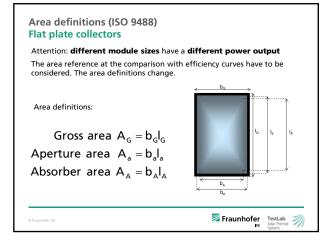
This International Standard is also applicable to hybrid collectors generating heat and electric power. However it does not cover electrical safety or other specific properties related to electric power generation.

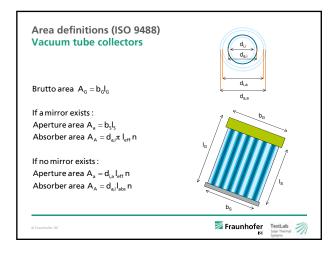
© Fraunhofer IS

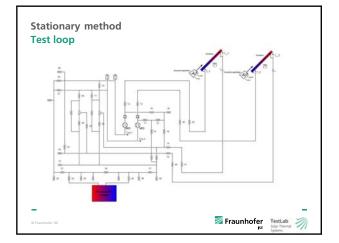
ISO/FDIS 9806:2013(E) and EN 12975-2:2006-A1:2012 Scope (2)

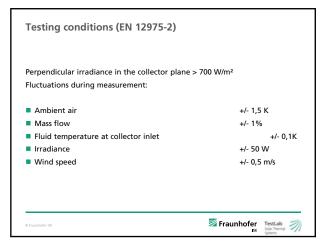
This International Standard is also applicable to collectors using external power sources for normal operation and/or safety purposes.

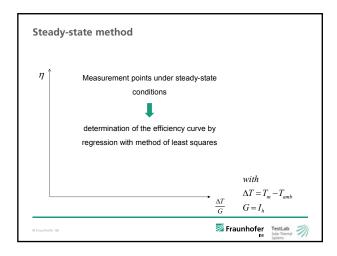

This International Standard is not applicable to those collectors in which the thermal storage unit is an integral part of the collector to such an extent that the collection process cannot be separated from the storage process for the purpose of making measurements of these two processes.



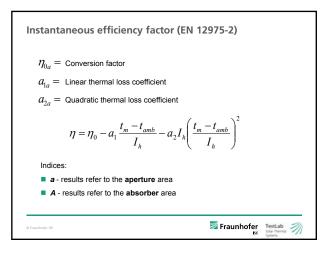

Test methods	Sub clause	Test
list	6	Internal pressure test for fluid channels
	7	Leakage test
	8	Rupture and collapse test
	9	High-temperature resistance
	11	Exposure test
	12	External thermal shock test
	13	Internal thermal shock test
	14	Rain penetration test
	15	Freeze resistance test
	16	Mechanical load test
	17	Impact resistance test
	20	Thermal performance test
	28	Pressure drop measurement
	18	Final Inspection
© Fraunhofer ISE		Fraunhofer TestLab

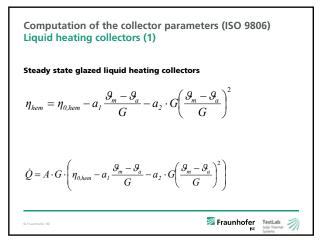


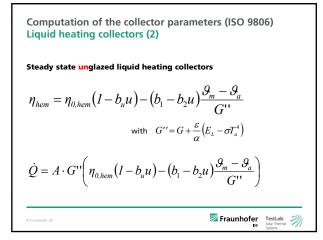


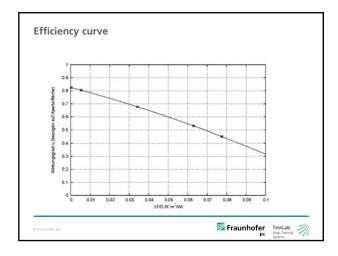

	Permitted deviation from the mean value			
Parameter	Glazed collector	Air collector	heating Unglazed collector	
(Global)Test solar irradiance	± 50 W/m ²	± 50 W/r	n ² ± 50 W/m ²	
Total short wave solar irradiance	-	-	± 50 W/m ²	
Thermal irradiance	•	-	± 20 W/m ²	
Surrounding air temperature	± 1,5 K	± 1,5 K	± 1,5 K	
Fluid mass flow rate	±1%	± 2 %	±1%	
Fluid temperature at the collector inlet	± 0,1 K	± 1,5 K	± 0,1 K	
Fluid temperature at the collector outlet	± 0,5 K	± 1.5 K	± 0,5 K	
Surrounding air speed	-	-	\pm 0,5 m/s but \pm 1,0 m/s for up to 10 % of the measurement period	

Testing conditions (ISO 9806 and EN 12975-2) Solar Simulator

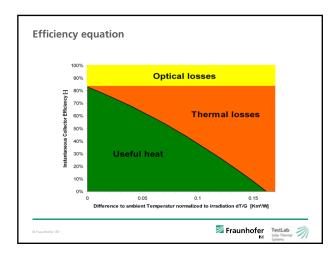

Additional measurements during tests in solar simulators:


- Measurement of simulated solar irradiance
 - Grid of maximum spacing 150 mm
 - Spatial mean value
- Measurement of thermal irradiance in simulators
- Ambient air temperature in simulators
- Outlet temperature of wind generators for calculations of collector performance

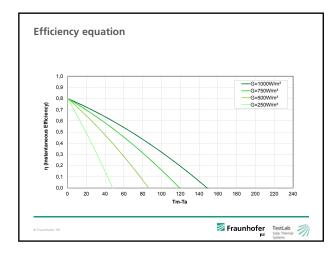

```
© Fraunhofer IS
```

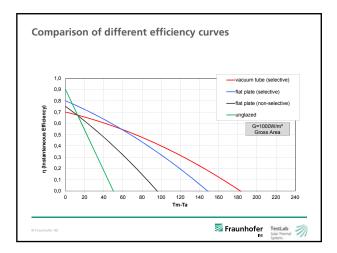



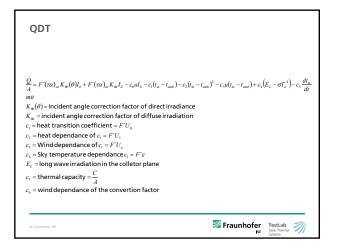
Computation of the collector parameters (ISO 9806) Air heating collectors (1) Steady state air heating collectors $\eta_{hem} = \frac{\dot{Q}}{A \cdot G} = \frac{(\dot{m}_{p_e} \cdot c_{f,e} \cdot \theta_e) - ((\dot{m}_{p_i} \cdot c_{f,i} \cdot \theta_i) - ((\dot{m}_{p_e} - \dot{m}p_i) \cdot c_{f,a} \cdot \theta_a)}{A \cdot G}$ Modelling like glazed liquid heating collectors Modelling like glazed liquid heating collectors

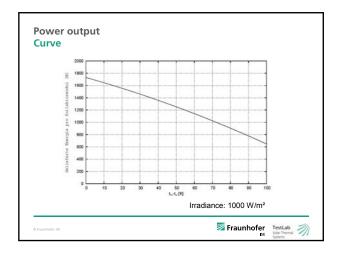


Open to ambient collectors having a measurable wind speed dependency (e.g. unglazed air heating collectors)

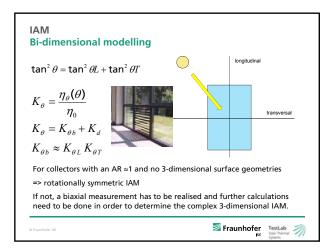

$$\frac{\dot{\mathcal{Q}}_m}{A\cdot G''} = \eta_{\max,0m/s} - b_u \cdot u$$

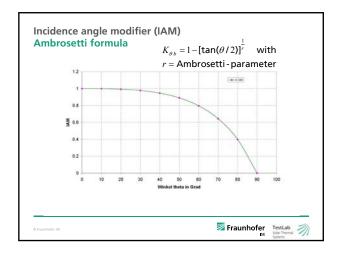




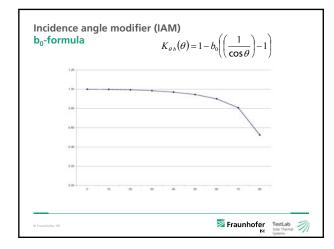


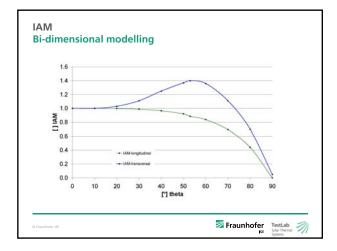
Quasi-Dynamic test procedure (QDT) not applicable for a standard solar simulator	
 Measurement of the collector at 4 evenly distributed operating temperature levels 	
there have to be days, with high and low diffuse irradiance fract windless and windy days and they have to contain measurement with different irradiance angles including values with varying ind angle 60°.	data
0 Frauchofer 15	festLab

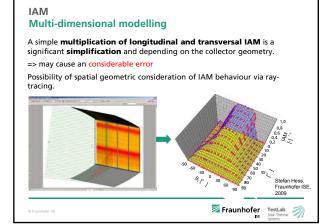


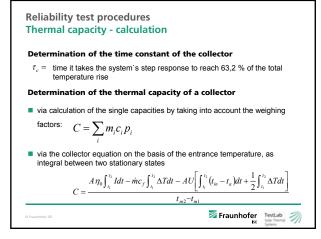


Tm - Ta in K	400 W/m2	700 W/m2	1000 W/m2
(693	1212	1731
10	607	1127	1646
30	421	941	1460
50	215	734	1253

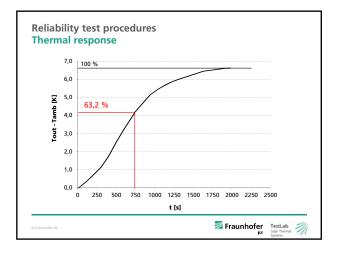


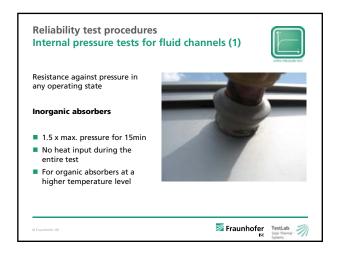


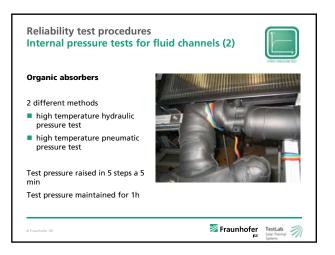


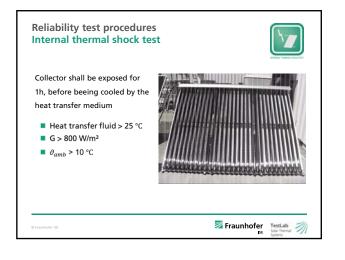


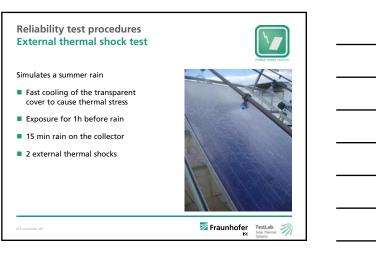


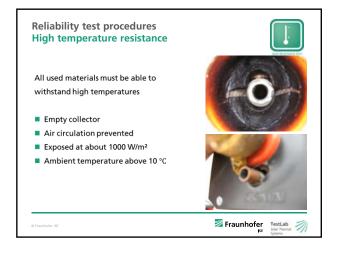


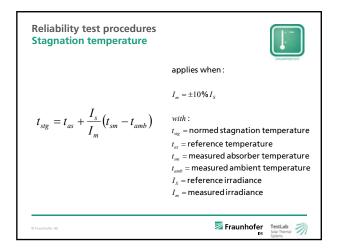


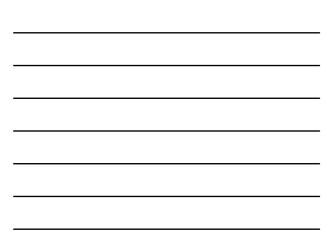


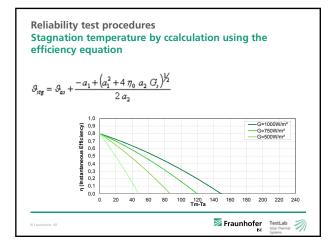


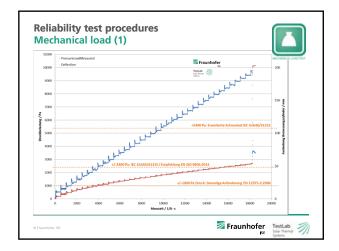


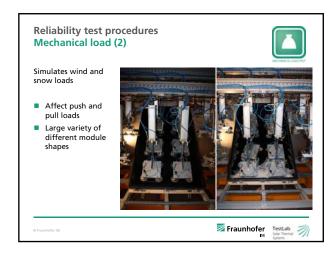


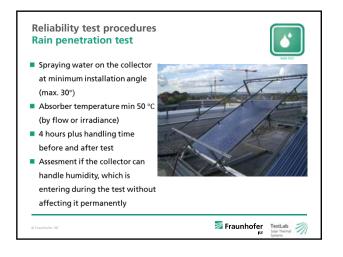


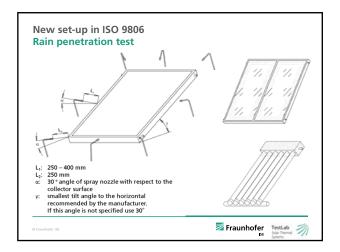

13

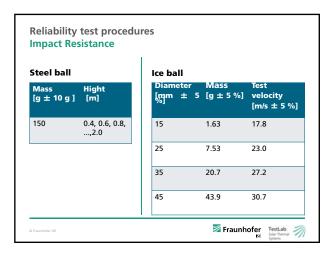


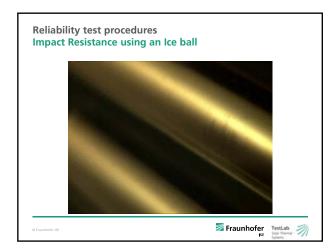


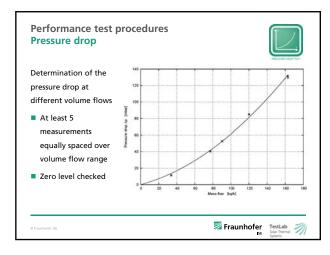








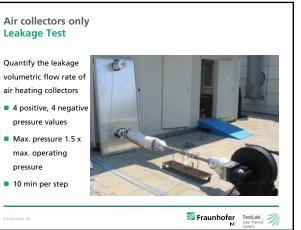




Reliability test procedures Exposition			
Climate condition	Class C "moderate"	Class B "sunny"	Class A "very sunny"
G [W/m ²] Hemispherical solar irradiance on collector plane during minimum 30 hours (or 15 hours in case of pre-exposure), min. ambient temperature, t_a [°C]	800 bei 10	900 bei 15	1000 bei 20
Irradiation on collector plane for exposure test during minimum 30 days, <i>H</i> [MJ/m ²]	420	540	600
Irradiation on collector plane for pre-exposure sequence during minimum 15 days, <i>H</i> [MJ/m ²]	210	270 Table 4 f	300 rom ISO 9806:2013

Reliability test procedures Solar Air Heaters only

Air collectors need further investigations because of the gaseous heat transfer medium


Leakage Test (closed loop)

The test is intended to quantify the leakage volumetric flow rate of air heating collectors. In some cases of collector designs the leakage test is not applicable, e.g. collectors open to ambient

Rupture or collapse test

This test is intended to determine the ability of air heating solar collectors to withstand the pressure levels expected in the air duct systems with which they will be incorporated

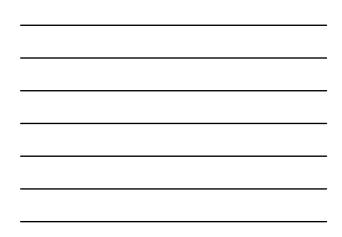
Fraunhofer TestLab

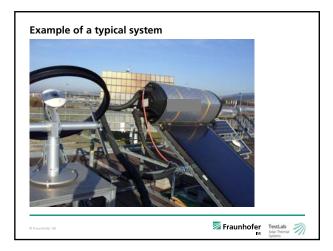
Air collectors only **Rupture or collapse test**

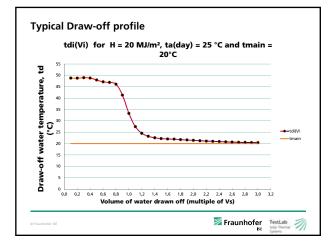
1

Determine the ability of air heating solar collectors to withstand the pressure levels expected in the air duct systems with which they will be incorporated.

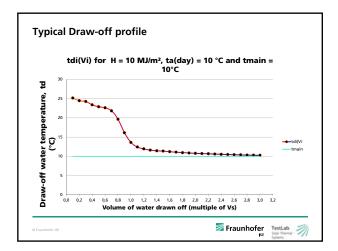
Scope		
	andard specifies test methods for validating the Factory Made Thermal Solar Heating Systems as specified in	1
	o includes two test methods for thermal performance by means of whole system testing.	
© Fraunhofer ISE	Fraunhofer TestLab	0

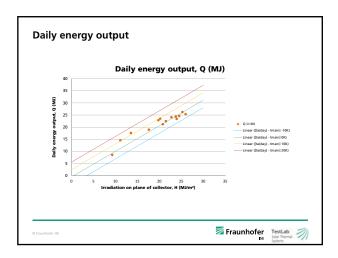

© Fraunhofer ISE	🖉 Fraunhofer	TestLab 🧐
5.11 Electrical safety		
5.10 Reverse flow protection		
5.9 Ability of solar-plus-supplementa	ry systems to cover the load	
5.8 Thermal performance characteriza	ation	
5.7 Labeling		
5.6.3 Blow-off lines		
5.6.2 Safety lines and expansion lines	5	
5.6.1 Safety valves		
5.6 Safety equipment		
5.5 Lightning protection		
5.4 Water contamination		
5.3 Pressure resistance		
5.2 Over temperature protection		
5.1 Freeze resistance		
5 Testing		

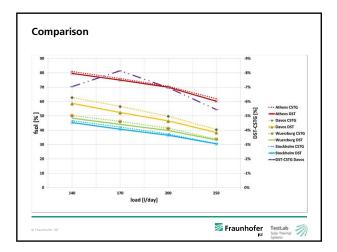

Performance test Thermal performa		on
EN 12976 contains no s references to 2 establish		•
CSTG-methodDST-method	(<u>C</u> ollector and <u>S</u> ystem (<u>D</u> ynamic <u>S</u> ystem <u>T</u> est	
Test method	Solar plus supplementary syst.	Solar-only and preheat systems
ISO 9459-2 (CSTG)	No	Yes
ISO 9459-5 (<i>DST</i>)	Yes	Yes
© Fraunhofer ISE		Fraunhofer TestLab

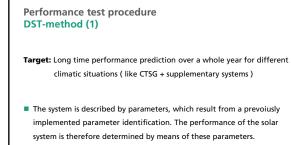

over a whole year for different
- series of one-day outdoor tests on the complete system
- short test
- overnight test

Performance CSTG-method	test procedure l (2)		
Performance te	st		
Irradiation per	day:	8 – 25 MJ/m²	
Range of t _{a(dag})	$y_{\rm y}) - t_{\rm mean}$:	-5 – 20 K	
Description	Draw-off	t _{a(day)} – t _{mean}	Duration
1. one-day-test	Evening	≈ 0	Min. 4 days
2. one-day-test	Evening	±9 K to 1.	Min. 2 days
3. one-day-test (optional)	Midday / Evening	= 1. or 2.	1 day
© Fraunhofer ISE		🖉 Fra	unhofer TestLab

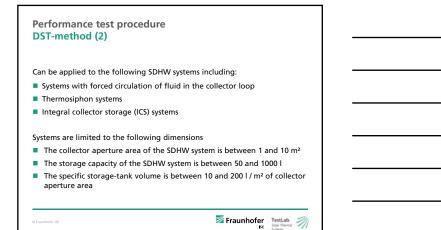








Performance in	dicators of th	ne system on a	innual base		demand volume l/da	у		
Location	Qd	QL	Fsol	Qpar	140			
	(LM)	(MJ)		(MJ)				
Stockholm	7797	3532,032	0,453					
Wuerzburg	7493	3626,64	0,484					
Davos	8488	4982,688	0,587		1	Differend	e DST-CS1	[%] G
Athens	5824	4635,792	0,796					
						Qd	QL	Fsol
Q_DST = (a+/-	Sigma a) (O CSTG						
Coro – includin	g "BtG" calcu					-5,2	-2,5	-2,8
cərə – includin	g "BtG" calci	ulation 140	l/d					
Gra-includin	ig "BtG" calci		l/d			-5,0	-3,2	-3,8
Localidade/Location		140		Qpar	(MJ)	-5,0 -4,9	-3,2 -6,4	-3,8 -7,0
Localidade/Location	Yearly valu Qd (MJ)	140 es for a demand vol QL (MJ)	ame of 140L/day Fisol	Qpar	(LM)	-5,0	-3,2	-3,8
Localidade/Location	Yearly valu Qii (MJ) 8206	140 es for a demand vol QL (MJ) 3621	ume of 1400/day Feel 47	-	-	-5,0 -4,9	-3,2 -6,4	-3,8 -7,0
Localidade/Location	Yearly valu Qd (MJ)	140 es for a demand vol QL (MJ)	ame of 140L/day Fisol	Qpar 	-	-5,0 -4,9	-3,2 -6,4	-3,8 -7,0
Localidade/Location Stockholm Wuerzburg	Yearly valu Qd (MJ) 8206 7867	140 es for a demand vol QL (MJ) 3621 3744	ame of 1400/day First 47 50	-	-	-5,0 -4,9	-3,2 -6,4	-3,8 -7,0
Localidade/Location Stockholm Wuerzburg Davos	Yearly valu Qid (MJ) 8206 7867 8908	140 es for a demand vol QL (MJ) 3621 3744 5300	ame of 1400day Fiel 47 50 63	-	-	-5,0 -4,9	-3,2 -6,4	-3,8 -7,0





- `Black-box`-procedure
- No need for steady-state conditions

No need for measurements inside the store or inside the collector loop

Performance test procedure DST-method (4)

Procedure

Conditioning

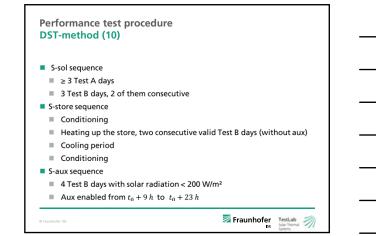
- At the beginning and at the end of each test sequence, the store is brought to uniform temp. by applying a draw-off rate of 10 \pm 1 l / min
- At the beginning of each sequence, at least 3 store volumes shall be withdrawn
- At the end as well or $\Delta \vartheta < 1 \text{ K}$
- Integrated auxiliary heating shall be disabled during conditioning

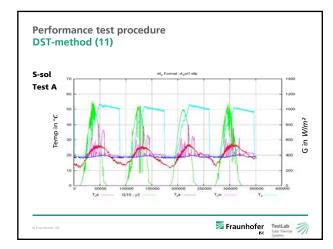
Fraunhofer BE Solar TrestLab

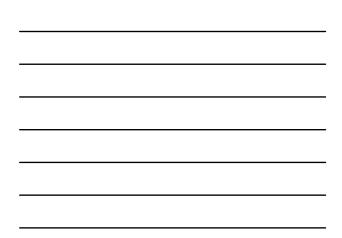
Performance test procedure DST-method (5)	
Procedure	
The test itself consists of 3 test sequences, called	
S-sol	
number of consecutive days of measurement with significant solar input. Two specific daily operation conditions named Test A and Test B	
S-store	
Store-loss test sequence	
S-aux	
Test of the operation of the system with an integrated auxiliary heater under low solar irradiation conditions	
e Fraucheter St. Testulation	

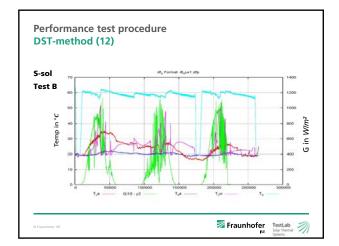
Performance test procedu DST-method (6)	re	
Test A		
The aim of Test A days is to	Draw-off No.	Draw-off start time
acquire information about	1	t_0
collector array performance	2	$t_0 + 2h \pm 5 min$
at high efficiencies	3	$t_0 + 4h \pm 5 min$
t ₀ shall be between 6:30 and	4	$t_0 + 5h \pm 5 min$
8:00 solar time	5	$t_0 + 6h \pm 5 min$
8.00 solar time	6	$t_0 + 8h \pm 5 min$
Integrated auxiliary heater	7	$t_0 + 11h \pm 5 min$
(if present) shall be disabled		·
© Fraunhofer ISE		Fraunhofer BE Solar Tend

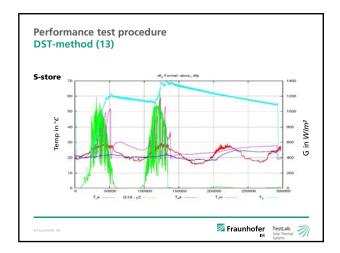


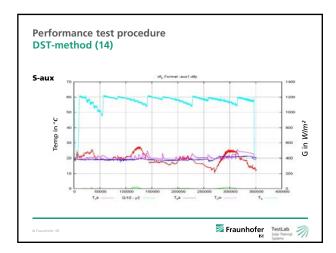

	rmance test procedure nethod (7)		
Test A			
Volu	ume of any draw-off $\geq 20 I$		
Dail	y irradiance ≥ 12 MJ/m²		
	System dimensions	Draw-off volume	
	$100 \text{ I/m}^2 \leq \text{Vs/Ac} \leq 200 \text{ I/m}^2$	0,2 Vs +/- 10%	
	$60~l/m^2 \leq Vs/Ac \leq 100~l/m^2$	0,25 Vs +/- 10%	
	$40 \text{ I/m}^2 \leq \text{Vs/Ac} \leq 60 \text{ I/m}^2$	0,33 Vs +/- 10%	
	$20 \ l/m^2 \leq Vs/Ac \leq 40 \ l/m^2$	0,5 Vs +/- 10%	
© Fraunhofer IS	E CONTRACTOR OF CONTRACTOR	🗟 Fraunhofer قة	TestLab Solar Tremal



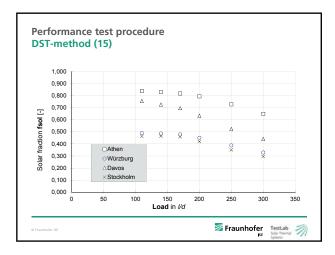

Performance test procede DST-method (8)	ure	
Test B		
The aim of this test is to	Draw-off No.	Draw-off start time
acquire information about	1	t ₀
store heat losses and	2	$t_0 + 2h \pm 5 min$
collector array performance	3	$t_0 + 4h \pm 5 min$
at low efficiencies	4	$t_0 + 6h \pm 5 \min$
Integrated auxiliary heater	5	$t_0 + 8h \pm 5 \min$
(if present) shall be enabled		
before and after draw-off		
© Fraunhofer ISE		Fraunhofer TestLab

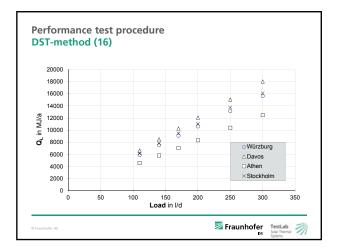

	ormance test procedure method (9)	
Test B	ł	
	aw-off > 5 and outlet temp. < thres ily irradiance > 12 MJ/m ²	hold temperature
	System dimensions	Temperature
	100 l/m² ≤ Vs/Ac ≤ 200 l/m²	70 °C
	$60~l/m^2 \leq Vs/Ac \leq 100~l/m^2$	60 °C
	40 l/m² ≤ Vs/Ac ≤ 60 l/m²	50 °C
	$20 \text{ I/m}^2 \leq \text{Vs/Ac} \leq 40 \text{ I/m}^2$	40 °C
	ISE	Fraunhofer TestLab

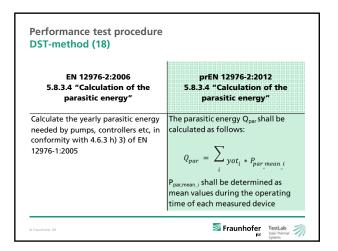












Performance test procedure DST-method (17)	
Q _{par}	
EN 12976-1:2006 4.6.3. Documents for the user"	prEN 12976-1:2012 4.6.3 "Documents for the user"
the annual electricity consumption for pumps, control systems and electrical valves of the system for the same conditions as specified for the thermal performance, assuming a yearly pump operating time of the collector pump of 2000 h	the annual electricity consumption Opar for pumps, control systems and electrical valves of the system as determined according to 5.8.3 of EN 12976-2

Performance test procedure Relation between CSTG and DST

In October 1999, the EU-SMT project team "Bridging the Gap" reported on the comparability between CSTG (ISO 9459-2) and DST (ISO/DIS 9459-5) and conversion factors were successfully established.

$$Q_{DST} = (a \pm \sigma_a) Q_{CSTG}$$

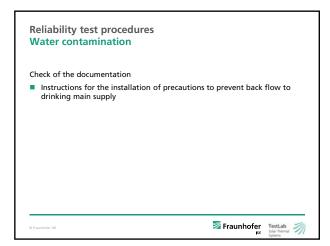
Type of system	Condition	Α	σ_{a}
Forced circulation	$V_{load} \ge V_{store}$	1.004	0.004
Thermosyphon system	All V _{load}	1.056	0.004
ICS system	All V _{load}	1.037	0.003

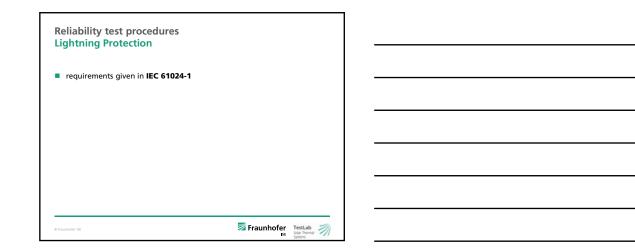
Ensure that the protective antifreezing provisions are operating properly

- testing authority shall identify which method has to be employed
- Distinction of different system types
- Systems using anti freeze fluid
- Drain-back systems
- Drain-down systems
- Freeze protection and control functions combined
- Other systems

© Fraunhofer ISE

Reliability test procedures Over temperature protection


Determine whether the solar water heating system is protected against damage and the user is protected from scalding hot water delivery after a period of no hot water draw and failure of electrical power

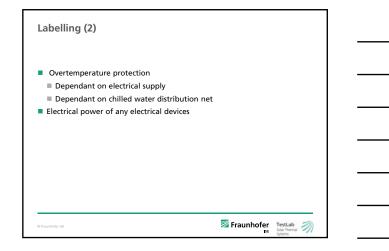

- Empty collector
- Solar irradiance > 1000 W/m²
- Ambient air temp. 20-40 °C
- Wind velocity < 1m/s</p>
- Duration: 1h under steady-state conditions

Fraunhofer TestLab

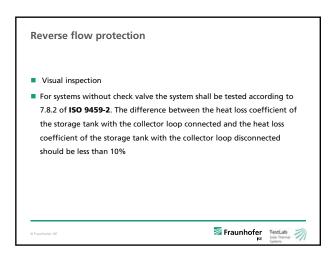
Reliability test procedures Pressure resistance Evaluate hydraulic pressure rating of all components and interconnections of a solar water heating system when installed according to the manufacturer's instructions Collector temperature = amb. air temperature Safety valve has to be disabled hydraulic pressure equal to 1.5 times the manufacturer's stated maximum individual working pressures

Hold pressure for 15 min

Reliability test procedures Safety equipment


- Safety valve
- Each collector circuit or group of collector circuits is fitted with at least one safety valve
- Material withstands temperature and heat transfer medium
- Safety lines and expansion lines
 - Verify that safety and expansion lines can't be shut-off
- Check the dimension of the safety line
- Blow-off lines
- Verify that the blow-off lines can't freeze up and that no water can accumulate within these lines
- Verify that steam or heat transfer do not threaten the immediate environment

© Fraunhofer IS


Labelling (1) Check if all items from the labelling list are completed Name of the manufacturer Designation of system type Serial number Year of production Absorber- and aperture area in m² Nominal storage contents in 1 Rated pressure of the drinking water pipeline in kPa Heat transfer medium Rated pressure of the heat transfer medium

aunhofer ISE

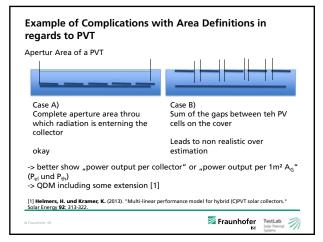
Fraunhofer TestLab

Ability o	f solar-plus-suppl.	systems to cover the le	oad	
Ensure that the solar-plus-supplementary system is able to cover the maximum daily load without solar contribution				
	Draw-off start time	Draw-off volume		
	$t_0 + 12 h$	40 % daily load		
	$t_0 + 17 h$	20 % daily load		
	$t_0 + 22 h$	40 % daily load		
© Fraunhofer ISE		🗟 Fraunhofer	TestLab	

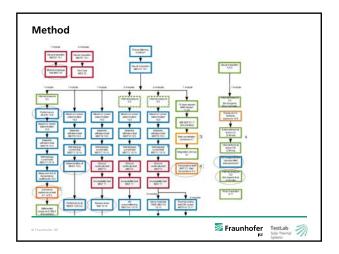
Definitionen – on-going discussions

What is a PVT? A CPVT? What is the aperture area of a PVT?

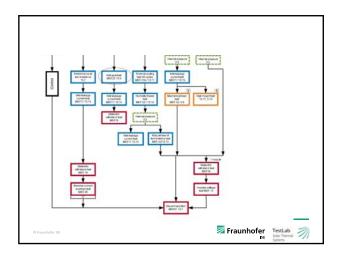
A PVT collector/module is a device which converts solar radiation into both heat and electricity (from a PV effect) and from which both are simultaneously usefully/ utilizable removed.


A CPVT is a PVT using a optical device to concentrate insolation from a bigger aperture to a smaller absorber area.

For PVT collectors a precession of area definition is necessary:


The absorber area of a PVT is the area absorbing insolation. (regardless if converting partly more into heat or electricity.)

The aperture area of a PVT collector is the projected area of the product of optical acceptance width and height.


If you think it is necessary we could add to this another sentence, (I actually do not think this is necessary): In case the two functions (heat and electricity conversion) are separated into two layers of the device, the bigger area shall be taken as reference area.

