

Example name: Sunlighthouse

Template completed by: Spanish BISTS Network stefan.remke@solcess.co

For installations

BISTS Location: Pressbaum, austria Climate Type: Cfb Building Use: residential

Level of BISTS integration Rush, Reijenga: 1

OX New Build O Refurbishment O Other:

Type of BISTS:

Active/Passive/Hybrid

Function(s):

O Air heating
OX Water heating
O Combi-system

0

Cooling/ventilation/

shading

O PV/T

O linked to another

system

(e.g., heat pump)

O Other:

Building element:

O Facade OX Roof O Other:

tick all that apply

יו סום	characteristics:		
Solar thermal: 9 m² Photovoltaic modules: 48m²			
Stage of Development:		Responsible:	
0 0 0 0X 0X	Idea/Patent Prototype Demonstration Integral building element Commercially available	Velux Velux	
BISTS description and context			
	kampleBuilding size, form a ectural attributes	and function, project motivation, particular features,	
System viability			

BISTS Examples

Modelling and simulation tools developed/used

For example....new modules/types created for established simulation programs, stand-alone modelling, use of generalised codes, model outcomes, validation and accuracy. Design tools developed

BISTS Performance data

Graphs for collector efficiency, seasonal energy gains, diurnal/seasonal solar fraction, etc.

Based on:

O Estimation

O Detailed simulation
Specify software(s) used
O Measurement/testing

O Long-term monitoring

tick all that apply

Performance parameters

For integrated systems: key performance indicators

-

Solar savings fraction: %
Light transmittance: %
Solar transmittance: %
Total solar energy
transmittance: %:
Solar heat gain factor: %
Building fabric U-values:

 W/m^2K

Noise, fire, etc ratings

Other:

For separate collectors: performance rating coefficients - (EN12975, a0,a1,a2), ASHRAE, etc

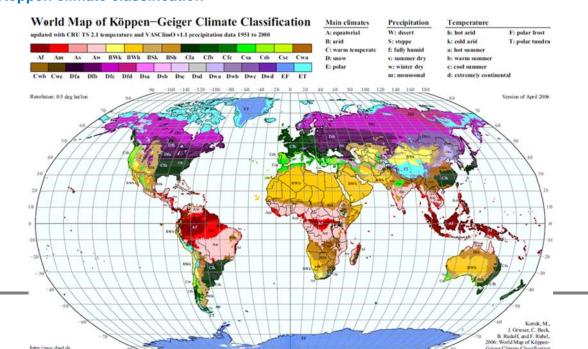
Other:

Additional information:		
Several Examples on the manufacturers website		
Sources and references:		
http://soltechenergy.com/soltech-sigma/		

INSTRUCTIONS

Please fill in as much information as possible.

Tick where appropriate.


Text in red is suggested guidance. Insert information in provided space, removing red text as appropriate

If possible, use metric values.

If necessary, supply additional information on separate sheets

Reference listing

Köppen climate classification

(Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World Map of Köppen-Geiger Climate Classification updated. Meteorol. Z., 15, 259-263.)

Reijenga classification

The integration of PV systems in architecture can be divided into five categories:

- 1. Applied invisibly
- 2. Added to the design
- 3. Adding to the architectural image
- 4. Determining architectural image
- 5. Leading to new architectural concepts.

(Reijenga, TH and Kaan, HF. (2011) PV in Architecture, in Handbook of Photovoltaic Science and Engineering, Second Edition (eds A. Luque and S. Hegedus), John Wiley & Sons Ltd, Chichester, UK)

Rush classification

The architectural/visual expression of building services systems are identified as:

Level 1. Not visible, no change

Level 2. Visible, no change

Level 3. Visible, surface change

Level 4. Visible, with size or shape change

Level 5. Visible, with location or orientation change

(Rush, RD. (1986) The Building systems integration handbook Wiley, New York, USA)

Collector test standards

BS EN 12975-2 2006 'Thermal solar systems and components solar collectors - Part 2 test methods'

ASHRAE Standard 93-2010 'Methods of Testing to Determine the Thermal Performance of Solar Collectors'

ASHRAE Standard 95-1987 'Methods of Testing to Determine the Thermal Performance of Solar Domestic Water Heating Systems'