

Example name: Kingspan facade solar air heater

BISTS characteristics:

The Kingspan Integrated Sol-Air Collector (ISAC) is a modified Kingspan insulated composite panel. On a typical panel, five crowns are left un-insulated, creating profiled voids beneath the crowns. Incident solar radiation on the panel's outer steel skin is absorbed leading to a rapid temperature rise inside the channel. Fresh air is drawn into the channels at low level, heated and supplied into a supply plenum at the top of the panel. Additional, auxiliary heating systems will provide top-up heating when necessary.

Stage of Development:

Responsible:

- O Idea/Patent
- O Prototype
- Demonstration
- Operation
 Integral building element
- Commercially available
- Kingspan Renewables Kingspan Renewables Kingspan Renewables

BISTS description and context

Due to its easy and rapid system installation and dual functionality, thereby reducing material and labour costs, the Kingspan Integrated Sol-Air Collector was an ideal choice to provide solar pre-heated air to an occupied area in the case study building; a large supermarket warehouse. The ergonomic building envelope solution suited directly with the architectural features required by the portal fame, panel clad structure, requiring minimal on-site fabrication of the system structure and ideal for this new build project.

The case study system has been installed to provide solar pre-heating for a space $645.12m^2$ and $11483.13m^3$. The Solar-Air flow rate for the building was calculated at $89m^3/hr/m^2$ which required an effective collector area 72.8m². Each panel has an effective area of 0.583 m² therefore 124.8 m² of panels were required. To fit the building's south facing façade, above proposed light wells, the total Kingspan Integrated Sol-Air Collector system was 8.95m high and 14.4m long (128.8m²).

System viability

Based on the 128.8m² of Solar-Air system installed on the south elevation façade and the 14.4m of linear plenum and HVAC duct, an estimation of the solar derived energy delivered, CO₂ reduction, final material cost, annual financial savings and payback period have been determined

Solar-Air Savings		
Total energy demanded by the building	66.32	Mw/hr
Total predicted energy delivered by Solar-Air	13.14	Mw/hr
Estimated annual savings	653	£/annum
Total cost of Solar-air system	2661,6	£
Payback period	5	Years
CO ₂ annual Reductions	2.36	tCO2/Annum

Where the cost of natural gas was ± 0.036 /kWhr, additional cost of Solar-Air panels over standard panel costs $\pm 10/m^2$, cost of plenum $\pm 39/m$, cost of duct system $\pm 25/m$, sensors & control equipment ± 450

Modelling and simulation tools developed/used

Not available

