

Example name: Hybrid installation consisting of solar collectors, phase change materials and borehole storages

Template completed by:

Prof. Aleksandar Georgiev, Dept. of Mechanics, Technical university of Sofia, Branch Plovdiv, Plovdiv, Bulgaria, ageorgiev@gmx.de>

Assoc. Prof. R. Popov, Dept. of Optoelectronic

For installations

BISTS Location:

Place: Plovdiv Longitude: 24º 46.21' Latitude: 42º 08.22'

Climate Type: Cfc Köppen climate classification

Building Use: public

Level of BISTS integration

Reijenga classification:
Added to the design

Other: partially refurbishment

BISTS Examples

Type of BISTS:

Active/ Hybrid

Function(s):

- O Water heating
- linked to another system (heat pump)
- Other: Phase change material storage, Borehole thermal energy storage

Building element:

Roof, not integrated

BISTS characteristics:

1. Collection area: 6,3

 m^2 , 2. Orientation/ inclination/ south: 37°

BISTS Examples

Stage	of Development:	Responsible: Technical university Sofia, branch Plovdiv
0 0 0 0	Idea/Patent Prototype Demonstration Integral building element Commercially available	Hybrid installation with solar collectors, PCM and BTES

BISTS description and context

One room of the TU Sofia, branch Plovdiv, 4th floor, 25 m2, last floor, orientation - East

System viability: N/a

Modelling and simulation tools developed/used

TRNSYS, EED, Geosyst

BISTS Performance data Based on: O Measurement/testing

Performance parameters

For separate collectors:

Other:

- 1. Absorber: copper
- 2. Absorptivity: 95%
- 3. Emissivity: 5%
- 4. Conversion ratio: 600 kWh/m² year
- 5. Selective absorber layer: 6. Titanium

Nutrir-Oxide

Additional information:

Sources and references:

- [1] A. Stoyanov, A. Georgiev, R. Popov. Possibilities of using PCMs in solar thermal installations. Proc. of the Second European Polytechnical University Int. conference "Education, Science, Innovations", 9-10 June 2012, Pernik, Bulgaria, p. 359-365.
- [2] E. Toshkov, A. Georgiev, R. Popov. Ground Coupled Heat Pumps with Solar Collectors -International and Bulgarian Experience. Proc. of the Second European Polytechnical University Int. conference "Education, Science, Innovations", 9-10 June 2012, Pernik, Bulgaria, p. 367-374.
- [3] R. Popov, A. Georgiev. SCADA system for study of installation consisting of solar collectors, phase change materials and borehole storages. Proc. of the 2nd Int. Conf. on Sustainable Energy Storage, June 19-21, 2013, Trinity College Dublin, Ireland, pp. 206-211.
- I41 A. Stovanov, A. Georgiev, R. Popov, Experimental installation for investigation of latent heat accumulator as a part of hybrid system for air-conditioning. Proc. of the Nat. conf. Sliven 2013, June 19-21, Sliven 2013.