

Example name: Bombardier (Canadair Facility)

BISTS characteristics:

The system is installed on two sections of the complex. One 40° east of the south and another 50° west of south. The total surface of solar panels is 8826 m² plus an additional 1700 m² canopy. It is basically a second shell which is mounted on the outer walls of the building, and heats the air and then leads it inside the building. It is metallic in dark colour and it can be fabricated on site.

Stage of Development: Responsib	tage of Development: Responsible: Company.				
 O Idea/Patent O Prototype O Demonstration O Integral building element √ Commercially available tick all that apply 	SolarWall				
BISTS description and context					
integrated on the extensive renovation the appearance of the aged buildings The architect overseeing the renovat SolarWall collector and contrasted it to ensure an even distribution of inco	eating system in the world. The solar installation was ons that were needed to improve the indoor air quality and s of the complex. ion project selected the handsome blue-grey color for the with a white-colored canopy, which also acts as a manifold oming air across the entire solar collector area. The overall g so that it was energy efficient, and aesthetically attractive.				
System viability					
System viability					
The depreciation of €210265 (in 1990	6 prices), came in just 1,7 years.				
Modelling and simulation tools dev	veloped/used				
	reated for established simulation programs, stand-alone model outcomes, validation and accuracy. Design tools				

BISTS Performance data

Based on:

Performance parameters

For integrated systems: key performance indicators -

Solar savings fraction: % Light transmittance: % Solar transmittance:% Total solar energy transmittance: %: Solar heat gain factor: % Building fabric U-values: W/m²K Noise, fire, etc ratings Other:

For separate collectors: performance rating coefficients -(EN12975, a0,a1,a2), ASHRAE, etc

Other:

Graphs for collector efficiency, seasonal energy gains, diurnal/seasonal solar fraction, etc.

Total System Performance - from CANMET's monitoring report.

Units	Active Solar	Other Savings	Total
KWh/m²/day	1.23	1.44	2.67
GJ/m ² /year	1.21	1.42	2.63
Entire System			
GJ/year	10,678	12,531	23,210
\$/year	70,688	82,955	153,600

Additional information:

Sources and references:

http://solarwall.com/media/download_gallery/SolarWall_SellSheet.pdf

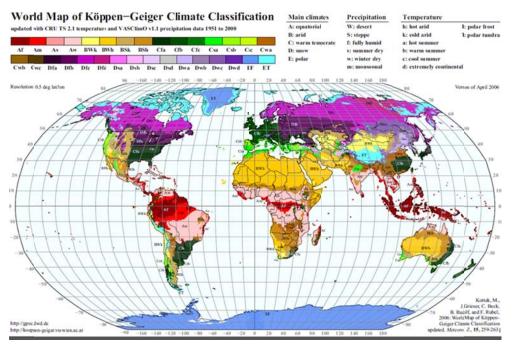
http://solarwall.com/media/download_gallery/cases/CanadairBombardier_Y96_SolarWallCaseSt udy.pdf

http://solarwall.com/en/products/solarwall-air-heating/how-solarwall-works.php

INSTRUCTIONS

Please fill in as much information as possible.

Tick where appropriate.


Text in red is suggested guidance. Insertinformation in provided space, removing red text as appropriate

If possible, use metric values.

If necessary, supply additional information on separate sheets

Reference listing

Köppen climate classification

(Kottek, M.,J. Grieser, C. Beck,B. Rudolf, and F. Rubel,2006: World Map of Köppen-Geiger Climate Classificationupdated. Meteorol. Z., 15, 259-263.)

Reijenga classification

The integration of PV systems in architecture can be divided into five categories:

- 1. Applied invisibly
- 2. Added to the design
- 3. Adding to the architectural image
- 4. Determining architectural image
- 5. Leading to new architectural concepts.

(Reijenga, TH and Kaan, HF. (2011) PV in Architecture, in Handbook of Photovoltaic Science and Engineering, Second Edition (eds A. Luque and S. Hegedus), John Wiley & Sons Ltd, Chichester, UK)

Rush classification

The architectural/visual expression of building services systems are identified as:

Level 1. Not visible, no change Level 2. Visible, no change Level 3. Visible, surface change Level 4. Visible, with size or shape change Level 5. Visible, with location or orientation change

(Rush, RD. (1986) The Building systems integration handbook Wiley, New York, USA)

Collector test standards

BS EN 12975-2 2006 'Thermal solar systems and components solar collectors - Part 2 test methods'

ASHRAE Standard 93-2010 'Methods of Testing to Determine the Thermal Performance of Solar Collectors'

ASHRAE Standard 95-1987 'Methods of Testing to Determine the Thermal Performance of Solar Domestic Water Heating Systems'