

COST Action TU1205 (BISTS)

Building Integration of Solar Thermal Systems

Title: Review on modelling and simulation of building-integrated solar thermal systems

Date: April, 2014

Participants: Chr. Cappel, C. Christofi, A. Coronas, R. Mateus, M. Mckeever, Chr. Maurer, M. Kilic.

Contributors: Chr. Lamnatou, J. Mondol, A. Ghosh, D. Nikolic, M. Bojic, S. Kalogirou, D. Chemisana (WG2 leader).

Contents:

Abstract	p.3
1. Introduction	p.3
2. Studies of Energetic Simulation (emphasis: building)	p.4
3. Studies of Energetic Simulation (emphasis: system)	p.8
4. Studies of Energetic Simulation (emphasis: building/system)	p.24
5. Studies of Thermal Simulation (emphasis: building)	p.32
6. Studies of Thermal Simulation (emphasis: system)	p.34
7. Studies about Thermal Simulation (emphasis: building/system)	p.56
8. Studies of Energetic/Thermal Simulation (emphasis: building)	p.62
9. Studies of Energetic/Thermal Simulation (emphasis: system)	p.62
10. Studies of Energetic/Thermal Simulation (emphasis: building/system)	p.74
11. Studies of Optical Simulation (emphasis: building)	p.78
12. Studies of Optical Simulation (emphasis: system)	p.78
13. Studies of Optical/Thermal Simulation (emphasis: building/system)	p.81
14. Studies about other types of simulation	p.83
15. Conclusions	p.86

Abstract

In the present study, a literature review focusing on Building-Integrated (BI) solar systems is conducted. The review refers to systems which produce thermal, electrical or both thermal/electrical energy. Emphasis is given on the BI solar thermal systems while the solar electrical and solar thermal/electrical systems are also included in order to have a more complete picture of the current literature. The results of the review show that in the literature the greatest part of the models are thermal and/or energetic simulations of BI Photovoltaic-Thermal (PVT) (or BI PV) and skin façades. Thus, there is a need for thermal and/or energetic modelling works about BI solar thermal systems, especially for models which give emphasis to the building (since the greatest part of the investigations give emphasis to the system itself). On the other hand, the optical-models are very few and certainly, more optical-modelling studies are needed since they could provide useful information for the behaviour of the BI solar thermal systems from the optical point of view.

1. Introduction

The building sector is an energy-demand sector and the use of renewable energy technologies could provide considerable benefits. Among renewable energy systems, solar energy technologies are promising especially for countries with high solar radiation. In the frame of this concept, several solar systems have been already tested and applied in buildings. Nevertheless, there is a potential for further development and this could be achieved by adopting solar systems which are integrated into the building envelope. This specific type of systems in the literature is known as Building Integrated (BI) solar systems. BI configurations are a new tendency in the building sector and they provide several advantages given the fact that they replace a part of the building (façade, roof, etc.). Among the BI systems, solar thermal are a recent development; thereby, there is a potential for further development and this could be achieved by investigating this type of installations e.g. by means of modelling.

The present work provides an overview in terms of modelling works about BI solar thermal systems. References from the literature about BI solar thermal configurations along with other systems (which produce electrical and thermal or only electrical energy) are cited, separated into groups, based on the type of the model (thermal, energetic simulation, etc.) and based on the specific characteristics of each system (skin façade, solar thermal collector, Photovoltaic-Thermal (PVT), etc.). In this way, a complete picture of the studies available in literature is provided while the gaps in literature are identified. It should be noted that few works about systems which are Building-Added (BA) (and not real BI) are also cited for certain cases when the system/or the model is of great interest. Moreover, in some categories, some general studies (e.g. about modelling of building components) are also cited.

In the literature there are no review works about the modelling studies in the field of BI solar thermal systems and thus, the present work is an innovative study. The results of the present investigation reveal which types of models/systems are available in the current literature and which types need further development. In this way, the present work provides useful information for example for

academic/research purposes while models/systems which would be interesting for future investigation are also proposed.

2. Studies of Energetic Simulation (emphasis: building)

2.1. BI, Skin Façade

1. Ciampi M., Leccese F. and Tuoni G., Ventilated facades energy performance in summer cooling of buildings, 2003: Solar Energy 75(6), 491–502.

http://dx.doi.org/10.1016/j.solener.2003.09.010

Contexts	Outcomes
An analytical, simple method for design applications \rightarrow evaluation of electrical energy sayings in buildings	In all cases, the energy saving increases
 → evaluation of electrical energy savings in buildings Forced (with fan) and natural ventilation cases (stack effect) were examined Reference climatic conditions: outdoor air temperature = 28°C; indoor air temperature = 24°C; solar radiation intensity = 400 W/m² 	The positioning of the insulating material close to the inner masonry wall is more efficient than the one close to the outer facing. The energy saving increases remarkably
	as solar radiation intensity increases; the bigger the solar radiation is the more efficient ventilated façades turn out to be from an energy saving point of view.
	The energy saving increases sensibly as the difference between the outdoor and indoor temperatures decreases.
	The energy saving is remarkably influenced by the wall outer surface thermal resistance value and by relative roughness of the slabs delimiting the air duct.

2. Goia F., Haase M. and Perino M., Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective, 2013: Applied Energy 108, 515 – 527.

http://dx.doi.org/10.1016/j.apenergy.2013.02.063

Contexts	Outcomes
A comprehensive approach (including heating, cooling	The optimal configuration of the façade
and artificial lighting energy demand) was adopted $ ightarrow$	module was investigated for an office
optimization of façade configuration.	building characterized by a typical

A methodology for the optimal transparent	layout, located in Frankfurt (Germany)
percentage in a façade module for low energy office buildings	(belongs to temperate-oceanic climate)
The investigation was carried out in a temperate oceanic climate (with different HVAC system efficiency)	A daylighting calculation was performed at each heat-balance time-step when the sun was up. The electric lighting control system (continuous dimming control) was simulated to determine
Façade module: single skin façade technology; two surfaces: a transparent part and an opaque part; the transparent surface was made of a triple glazing with low-E coatings (clear glass panes) and integrated external solar shading devices – i.e. a highly-reflective external venetian blind system (blind slate reflectivity: 80%)	the lighting energy needed to make up the difference between the daylighting illuminance level and the design illuminance set-point
Aim of the search: to find the WWR (Window-to-Wall Ratio) of the façade module that minimizes the total energy demand of the building	
Integrated thermal-daylighting simulations	
The integrated thermal and daylight simulations were carried out by using the EnergyPlus software (calculations on hourly basis for the entire year).	

3. Liu M., Wittchen K.B., Heiselberg P.K., Development of a simplified method for intelligent glazed façade design under different control strategies and verified by building simulation tool BSim, 2014: Building and Environment 74, 31-38.

http://dx.doi.org/10.1016/j.buildenv.2014.01.003

Contexts	Outcomes
A simplified calculation method for intelligent glazed	The results were evaluated by the
façade under different control conditions (night	Danish building simulation tool BSim
shutter, solar shading and natural ventilation) was	and they showed good correlation for
developed to simulate the energy performance and	indoor air temperature and solar
indoor environment of an office room installed with	transmittance and acceptable
the intelligent façade. The method took into	correlation for illuminance level, energy
consideration the angle dependence of the solar	demands of heating, cooling, lighting
characteristic, including the simplified hourly building	and ventilation between the simplified
model developed according to EN 13790 to evaluate	method and BSim. The authors noted
the influence of the controlled façade on both the	that that simplified method is a
indoor environment (indoor air temperature, solar	reasonable reliable tool for the early
transmittance through the façade and the illuminance	stages of an office building design
level on a chosen point) and the energy performance	process, given the fact that the model is
of the room.	based on hourly calculation of an office
	in the whole reference year.

2.2. BI, Solar Chimney

1. DeBlois J., Bilec M. and Schaefer L., Simulating home cooling load reductions for a novel opaque roof solar chimney configuration, 2013: Applied Energy 112, 142–151.

Contexts	Outcomes
Roof solar chimney (RSC) = a low cost passive	The authors noted that zonal building
ventilation technique for reducing the energy	modelling is a coarse grid numerical
consumption for cooling buildings	approach and the program ESP-r was
	chosen (ESP-r creates a heat flux
This study examined the performance and the level of	network and an airflow network. The
energy savings by simulating a detached home in four	two are coupled by defining common
climates with RSC, cross-ventilation, and standard ventilation strategies	zones, and solved together)
	Climatic conditions: four climates were
Each case was simulated by means of ESP-r for	chosen for the simulation. The climates
baseline and high efficiency construction, detached	ranged from Pittsburgh (relatively cool
homes with a single story, three bedrooms, a 189 m ²	and where many houses use window air
floor plan, high thermal mass constructions	conditioners), to Phoenix (hot, arid
	climate and more common central air
PVs were integrated into the surface of the solar	conditioning). The other two locations
chimney on the South-facing roof to improve the RSC	chosen were Albuquerque and Atlanta
performance with their absorptive properties, and	(with cooling requirements in between
provide cooling to the reverse of the PV panels with	those of Pittsburgh and Phoenix).
the ventilation airflow	Albuquerque is a dry climate while
	Atlanta is a wet one. According to IECC
To form the RSC, a gap under the external layer of the	climate zone nomenclature, Pittsburgh
roof allowed airflow from the interior of the house to	is 5A (moist), Albuquerque is 4B (dry),
a plenum in the peak of the attic with vents to the	Atlanta is 3A (moist), Phoenix is 2B
outside while cross ventilation was aided with	(dry). Typical Meteorological Year 3
openings in the interior walls allowing flow between	(IMY3) weather data from NREL was
rooms. The ventilation gap was modelled by	adopted for each location
discretizing the RSC into 12 sections and calibrating	
the air-now and convection coefficients with	
corresponding CFD models	

http://dx.doi.org/10.1016/j.apenergy.2013.05.084

2.3. BI, Solar Shades

1. Yao J., An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements, 2014: Building and Environment 71, 24 – 32.

http://ux.uoi.org/10.1010/j.buildenv.2013.09.011	
Contexts	Outcomes
Climatic zone: hot summer and cold winter zone of	The building simulation study indicates
China	that movable solar shade not only
	improves indoor thermal comfort in
Investigated building: a six-story residential building	summer but also reduces dramatically
(2100 m ²) in Ningbo city in hot summer and cold	extremely uncomfortable risks.
winter zone of China which was retrofitted with	
external movable solar shades	
Modelling: a south-facing room (a typical living room	
in China for relaxing and socializing with a comfortable	
illuminance level of 100-300 lux depending on types of	
activity), simulation software Energyplus; building	

http://dx.doi.org/10.1016/j.buildenv.2013.09.011

2.4. BA, Solar Cooling/heating

1. Mateus T. and Oliveira A. C., Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates 2009: Applied Energy 86(6), 949–957.

http://dx.doi.org/10.1016/j.apenergy.2008.09.005

Contexts	Outcomes
Integrated solar absorption cooling and heating	An optimization of solar collector size
systems for building applications. The TRNSYS	and other system parameters was
software tool was used as a basis for assessment.	analysed based on the simulated results
Building types considered: residential, office, hotel	By using an integrated solar system for combined heating and cooling, it is
TRNSYS models for a whole year in terms of combining	possible to save in terms of total costs
cooling/heating and DHW applications were utilized	and CO ₂ emissions (this is particularly
	true for South-European locations). The
New TRNSYS component types were created for the	single-family house and the hotel were
absorption chillers	the cases where the solar integrated
	system showed a higher economic
Three different locations/climates were examined:	feasibility. Based on that energy costs,
Berlin (Germany), Lisbon (Portugal), Rome (Italy)	Rome was the only city where it was
	possible to achieve a break-even
	situation. Compared to flat-plate

collectors, vacuum tube collectors
allowed a reduction in collector area
between 15 and 50%, although, due to
their initial cost, flat-plate collectors
had higher economic viability. In order
solar cooling (and heating) to become
more competitive, it is necessary the
initial costs for absorption chillers and
solar collectors to be lower.

2.5. General studies

1. Srebric J., Chen Q. and Glicksman L.R., A coupled airflow-and-energy simulation program for indoor thermal environment studies, 2000: ASHRAE Transactions 2000; Volume 106, Part 1, p. 929.

Contexts	Outcomes
Coupled airflow-and-energy simulation program $ ightarrow$	The coupled program is capable of
calculated simultaneously distributions of indoor	studying the dynamic airflow,
airflow and thermal comfort and heating/cooling load	heating/cooling load, and thermal comfort simultaneously in a space on a
Application of the program: to study thermal environment in a house and an atrium	personal computer
CFD and energy analysis program ACCURACY	

2. Zhai Z., Chen Q., Haves P. and Klems J.H, On approaches to couple energy simulation and computational fluid dynamics programs, 2002: Building and Environment 37 (8–9), 857–864.

Contexts	Outcomes
Integrated energy (finite difference) and CFD (finite volume) simulation: static and dynamic coupling strategies	The coupling strategies considered were implemented by using the EnergyPlus and MIT-CFD programs
Case studies: office in Boston; indoor auto racing complex in Pittsburgh	

3. Studies of Energetic Simulation (emphasis: system)

3.1. BI, Skin Façade

1. J. Hensen, M. Bartak, F. Drkal, Modeling and simulation of a double-skin façade system, 2002: ASHRAE Transactions 108(2), 1251-1259.

Contexts	Outcomes
Double-Skin Façade System	To predict the performance of Double
	skin façade system constitutes a
The airflow modeling methods considered were the	nontrivial modelling and simulation
mass balance network method and CFD	exercise that should be based on a
	thorough methodology and good
The authors noted that network method is more	working practice
suited for this type of "everyday" design support work	
but there are important areas where the network	Both the network method and CFD have
method in general might benefit from CFD, or vice-	their own advantages and
versa	disadvantages for modelling this type of
	natural and hybrid ventilation systems.

2. Patania F., Gagliano A., Nocera F., Ferlito A., Galesi A., Thermofluid-dynamic analysis of ventilated facades, 2010: Energy and Buildings 42(7), 1148-1155.

Contexts	Outcomes
Ventilated façade performance	A steady calculation method, suitable
	for design applications, has been
Complete thermofluid-dynamic analysis	illustrated to study the energy
	performances of ventilated façades
Analytical method for design applications (natural and	during the summer period.
forced convection configurations)	The authors of that work introduced the
Two dimonsional system	opergy saving rate "S" to evaluate the
Two-ulmensional system	energetic performance of the ventilated
Eluent software: finite-difference numerical solution	facade The CED results showed:
technique based on integration over the control	- The energy saving S augments if the
system	solar radiation increases and thus, for
	constant value of the absorption
Simulation for the ventilated facade considering the	coefficient and the outdoor
following climatic conditions: indoor air temperature =	temperature, the choice of the
297 K, temperature of the air at the inlet of the duct =	ventilated façade was recommended in
outdoor air temperature = 301 K	site with high values of solar radiation.
	- The increase of the external air
	temperature resulted in decrease of the
	energy saving rate S due to the
	reduction of the effects of ventilation of
	the structures.
	- The increase of the inlet velocity
	caused reduction of the air temperature
	inside the duct and increase of the
	energy saving rate S.

http://dx.doi.org/10.1016/j.enbuild.2010.02.006

3.2. BI, Solar Chimney

1. DeBlois J. C., Bilec M. M. and Schaefer L. L., Design and zonal building energy modeling of a roof integrated solar chimney, 2013: Renewable Energy 52, 241–250.

http://dx.doi.org/10.1016/j.renene.2012.10.023

Contexts	Outcomes
Roof integrated solar chimneys use solar radiation to heat air and induce natural ventilation through a house → they can improve the performance of roof integrated PVs by removing heat absorbed by the panels and enhance buoyant free cooling at night	The natural convection correlation selected for the walls of the channel worked well for flow driven by natural convection, but poorly for other flow modes
Unobtrusive, integrated solar chimney design in a detached single family home	The RSC concept shows promise as a way of providing free cooling in a house throughout the day and night, without
A method for modeling it in the zonal building energy modeling program ESP-r was proposed to assist in evaluating the design and predicting the thermal dynamics in changing ambient conditions. The model discretizes the solar chimney by dividing it into several zones	requiring major changes in the form of the house.
CFD is used to calibrate key model inputs	
A sensitivity analysis evaluates model sensitivity to several inputs and assumptions	
The mathematical model consisted of a heat balance for nodes at each surface and in each zone and a pressure-based airflow balance. The airflow network included buoyancy forces and losses in the channel, at the inlet and at the outlet, balanced over all of the nodes	
The CFD model was 2D, created in ANSYS Fluent (CFD model was 2 dimensional, because the air channel was symmetric with an aspect ratio of over 30)	
The CFD model was more physically accurate model of heat transfer and fluid flow than the heat transfer correlation and pressure-based network used in ESP-r	
The model adopted a steady-state assumption and temporally constant temperature boundary conditions for the walls	

3.3. BI, Trombe Wall

1. Zalewski L., Lassue S., Duthoit B. and Butez M., Study of solar walls - validating a simulation model, 2002: Building and Environment 37(1),109 –121.

http://dx.doi.org/10.1016/S0360-1323(00)00072-X

Contexts	Outcomes
Four solar wall configurations were examined:	The model can be used to study the
composite solar wall, Trombe wall, Insulated Trombe	effect of design parameters or new
wall, Non-ventilated solar wall	materials (important for the future
	development of solar walls) and to
Experimental installation $ ightarrow$ measurements about	compare different types of solar walls.
thermal transfer for model validation	
	The model is also used to study the
Model: finite difference method, heat transfer was	energy efficiency of solar walls for
considered to be one dimensional	different locations/climatic conditions

3.4. BI, PVT

1. Matuska T., Simulation Study of Building Integrated Solar Liquid PV-T Collectors, 2012: International Journal of Photoenergy 2012, 8 pages.

http://dx.doi.org/10.1155/2012/686393

Contexts	Outcomes
Simulation study on combined heat/electricity	Main factors defining the quality of PV-
production from given BIPV-T collectors for three	T thermal performance are cooling fin
typical applications (5°C: primary circuits of heat	quality (conductivity, thickness, and
pumps; 15°C: cold water preheating; 25°C: pool water	length) and bond conductance between
preheating) was conducted	riser pipe and cooling fin.
Climatic conditions examined: two different European	Building integration brings a large
climates (warm: Athens; moderate: Prague)	improvement especially to low-tech PV-
	T collectors. While high-tech BIPV-T
Mathematical model of unglazed solar flat-plate	collector configuration shows negligible
hybrid PV-T liquid collector (PVT-NEZ) based on	temperature difference between PV
principle theory for energy balance of solar thermal	and liquid at nominal conditions
collectors expanded for photovoltaic conversion	
	A huge potential for roof applications of
Input parameters of the model: thermal, optical,	BIPV-T collectors instead of BIPV with
electrical, geometrical properties of PVT collector	15% to 25% increase of electricity
parts, climatic conditions, operation conditions	production in warm climate (Athens)
	and 8% to 15% increase in moderate
Output parameters of the model: usable electric and	climate (Prague). Associated heat

thermal power, output temperature of liquid,	production is from several times to 10
temperature of absorber surface (PV cell)	times higher than electricity production.
Building envelope integrated installations were modelled with added adjacent envelope insulation layer of given heat resistance at the back side of PV or PVT collector with constant temperature behind	Low-tech BIPVT collectors could contribute with reduced performance level but still with considerable improvement when compared to BIPV
considered (as interior temperature)	modules without cooling.
The calculation approach of the PVT-NEZ model used external energy balance of PVT absorber (heat transfer from PVT absorber surface to ambient) and internal energy balance of PVT absorber (electric yield, heat transfer from PVT absorber surface to liquid); both balances were solved in iteration loops to find PVT absorber temperature (PV cell) and relevant heat transfer coefficients.	

2. Pantic S., Candanedo L. and Athienitis A. K., Modeling of energy performance of a house with three configurations of building-integrated photovoltaic/thermal systems, 2010: Energy and Buildings 42(10), 1779–1789.

http://dx.doi.org/10.1016/j.enbuild.2010.05.014

Contexts	Outcomes
Theoretical and experimental study of energy	Mathematical models have been
performance of three different open loop air heating	developed for
BIPVT systems that utilize recovered heat for home	 Unglazed BIPVT roof.
heating: Configuration 1: base case of unglazed BIPV	 Unglazed BIPVT roof connected
with airflow under it; Configuration 2: addition of 1.5	to a glazed solar air collector
m vertical glazed solar air collector in series with	 Glazed BIPVT roof
Configuration 1; Configuration 3: addition of a glazing	
over the PV	The obtained relationships for the
	BIPVT system exiting air temperature as
The model developed was verified against	function of solar irradiance and air
experimental data from a solar research house for	speed in PV cavity may be used for
Configuration 1	developing fan airflow control
	strategies to achieve desired outlet air
A mathematical model has been implemented in	temperature for different applications.
MathCad 2001i for the three BIPVT configurations	For the case of
	Configuration 1, preheated air was
A control volume formulation has been applied	suitable for HVAC system and domestic
	hot water (DHW) preheating. Higher
The partial differential equation for air and rock	outlet air temperatures of PV cavity
temperatures was solved numerically by explicit finite	suitable for DHW might be achieved by
difference method	Configurations 2 or 3. With

Region of the solar house: Concordia, Canada	Configuration 2, significant outlet air temperatures were achieved in winter along with enhanced thermal efficiency making it suitable for coupling with a
	Configuration 3 significantly reduced electricity production and may lead to excessively high PV temperatures.

3. Davidsson H., Perers B. and Karlsson B., Performance of a multifunctional PV/T hybrid solar window, 2008: Solar Energy 84(3), 365 –372.

http://dx.doi.org/10.1016/j.solener.2009.11.006

Contexts	Outcomes
A BI multifunctional PV/T collector was developed and evaluated: the PVT solar window was constructed from PV cells laminated on solar absorbers and it was placed in a window behind the glazing \rightarrow to reduce the costs of the solar electricity, reflectors were added to focus radiation onto the solar cells	A model for the simulation of the electric and hot water production was developed: the model could perform yearly energy simulations where different effects such as shading of the cells or effects of the glazing could be included or excluded
	The simulation program was calibrated against measurements of a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgården, in Älvkarleö in the middle of Sweden TRNSYS was adopted for some cases

4. Delisle V. and Kummert M., A novel approach to compare building-integrated photovoltaics/thermal air collectors to side-by-side PV modules and solar thermal collectors, 2014: Solar Energy 100, 50–65.

http://dx.doi.org/10.1016/j.solener.2013.09.040

Contexts	Outcomes
Case study of 40 m ² south-facing roof located in	For a conversion factor of 2, the BIPV/T
Montreal, Canada	system was found to produce 5–29%
	more equivalent useful thermal energy
Simulation was done for BIPV/T air system and side-	than the PV + T system
by-side PV modules and liquid solar thermal collectors	
(PV + T) using TRNSYS	
A new methodology was developed to deal with the	

challenge of comparing different types of energy. In	
this novel methodology, the two systems are	
operated based on criteria for thermal energy	
usefulness and the thermal energy collected is	
transferred into water using a heat exchanger. The	
concept of equivalent useful thermal energy	
production was adopted to combine the electrical and	
the thermal energy produced. To demonstrate the	
usefulness of that approach, a case study for a	
residence was performed by the authors.	

5. F. Ghani, M. Duke, J.K. Carson, Estimation of photovoltaic conversion efficiency of a building integrated photovoltaic/thermal (BIPV/T) collector array using an artificial neural network, 2012: Solar Energy 86, 3378–3387.

http://dx.doi.org/10.1016/j.solener.2012.09.001

Contexts	Outcomes
BIPVT dimensions are related with specific roofing and	By approximating the yield for each
energy requirements of the customer; thus, the issue	scenario, the optimal configuration can
of flow distribution and its effect on both thermal and	then be selected. It was found that the
PV performance it is important. In order to quantify	neural network can be successfully
the effect of flow distribution on PV output of a BIPVT	trained for this specific case offering a
array, a numerical approach was developed by	fast alternative to the original numerical
authors in a previous work. That study was numerical	approach.
and the authors calculated PV output. However, that	
method was time consuming and computationally	
intensive. To address this issue, the authors proposed	
in this paper an artificial neural network which can be	
used to approximate the PV yield of an array of	
specified shape operating under parallel/reverse flow	
in the manifolds and also with one or two fluid	
channels cooling each string of cells.	

3.5. BI, PV

1. Yoo S.-H., Simulation for an optimal application of BIPV through parameter variation, 2011: Solar Energy 85(7), 1291–1301.

http://dx.doi.org/10.1016/j.solener.2011.03.004

Contexts	Outcomes
The efficiency of a BIPV system as a shading device	The efficiency of the BIPV system as a
was examined at different months	shading device is seen to vary greatly in

Weather data: Suwon area, Korea	different months.
The simulation program SOLCEL, for the calculation of a shading/sunlit area on solar cell module and façade, surface temperature of solar cell module, effective solar irradiance on solar cell module, the power generation of a BIPV as a shading device, was developed and validated.	The simulation and experimental results for over surface temperature of solar cell module vary slightly under a higher solar irradiance condition.

2. Electrical/Energetic simulation (emphasis: system) Stamenic L., Smiley E. and Karim K., Low light conditions modelling for building integrated photovoltaic

(BIPV) systems, 2004: Solar Energy 77(1), 37-45

http://dx.doi.org/10.1016/j.solener.2004.03.016

Contexts	Outcomes
Low irradiance efficiency of PV modules was examined (low light level dependence of PV module efficiency is very important for accurate modeling of BIPVs, especially in northern latitudes and in climates with significant cloud cover).	The proposed model was able to accurately predict the actual energy production of a test system (at British Columbia Institute of Technology (BCIT)).
A new model for photovoltaic module performance was developed based on the single diode model of a solar cell, but introduced a single lumped parameter to the ideal diode equation to characterize the non- ideal characteristics of the cell.	Region of the experimental set-up: BCIT, Burnaby, Canada The model is capable of modelling the performance of photovoltaic systems that produce a large percentage of their total energy at low irradiance
The model was first applied to the open circuit voltage data collected for a solar module operating under conditions in which low irradiance contributed a large percentage of energy to the total annual energy production. Once the validity of the model was verified for modeling open circuit voltage the model was applied to a more comprehensive model which calculated the total power production on an hourly basis over several days.	conditions.

3. Fara L., Moraru A.G., Sterian P., Bobei A.P., Diaconu A. and Fara S., Building Integrated Photovoltaic (BIPV) systems in Romania. Monitoring, modelling and experimental validation, 2013: Journal of Optoelectronics and Advanced Materials 15(1-2), 125-130.

Contexts	Outcomes
Performance analysis of a BIPV system developed in	Artificial neural network (ANN)
Romania and mounted on the building of the	techniques were also evaluated (based
Polytechnic University of Bucharest (PUB)	on meteorological variables) in order to
	enhance the forecasts of solar
The estimation of the energy production of the BIPVs,	irradiation
on a short term period (two days), was considered	
Short-term solar irradiation forecasts are elaborated in two ways, based on meteorological experimental datasets	
Forecasting tests were run using Autoregressive Integrated Moving Average (ARIMA) models.	

4. Muresan C., Ménézo C., Bennacer R. and Vaillon R., Numerical Simulation of a Vertical Solar Collector Integrated in a Building Frame: Radiation and Turbulent Natural Convection Coupling, 2006: Heat Transfer Engineering, 27(2), 29-42.

DOI:10.1080/01457630500397658

Contexts	Outcomes
Vertical double skin PV façade (a tall PV module	Preliminary results of coupled heat
located at a fixed distance from a vertical wall of a	transfer for the whole collector were
building): elementary study	proposed by using gray radiation
	properties. For that specific case, it
During winter, fresh air is aspired by the air supply	seemed that the turbulent regime
system; during the summer, supporting thermal	appeared very close to vertical channel
chimney effect so as to cool PV	outlet. From all of these results, it is
	was concluded that further work is
The collector is subjected to direct and indirect sun	needed in order to include realistic
irradiation while the space between the wall and the	variations of radiation properties,
collector forms a channel, at the bottom of which air	including photoelectric effects and sun
is admitted and buoyancy-driven convection is	irradiation, so that a complete
developed	parametric study will allow extracting
	the best strategy to integrate PVs to
Damping functions were inserted in the kinetic energy	buildings.
of the turbulence dissipation ($arepsilon$) equation to account	
for viscous and wall-damping effects	
A finite volume scheme with a second-order	
discretization method for both advection and diffusion	
terms was applied; pressure correction method was	
adopted; the resolution was performed by using the	
SIMPLER algorithm	

Coupling of radiation heat transfer with conduction in	
the collector cover and overall coupling with thermo-	
aerodynamics phenomena in the air channel	

5. Mondol J. D., Yohanis Y. G., Smyth M. and Norton B., Long-term validated simulation of a building integrated photovoltaic system, 2005: Solar Energy 78, 163–176.

http://dx.doi.org/10.1016/j.solener.2004.04.021

Contexts	Outcomes
The PV array was roof mounted facing due south at an	Developed TRNSY type for inverter has
inclination 45° and was located in Ballymena,	been validated with measured data.
Northern Ireland	
	The results revealed that modification
The electrical and thermal performance of the BIPV	of global-diffuse correlation and module
system was predicted using TRNSYS. A new	temperature prediction improved the
component model has been developed for modeling	overall accuracy of the simulation
inverter output and modifications were made to	model. The monthly error between
standard TRNSYS types for global-diffuse correlation	measured and predicted PV output was
and PV module temperature	below 16%. Over the period of
	simulation, the monthly average error
Statistical analysis was performed with the measured	between the measured and the
and predicted data for three global-diffuse	predicted PV output was 6.79% while
correlations and four tilted surface radiation models	the monthly average error between
to find those best for estimating the beam and diffuse	measured and predicted inverter output
components of the horizontal insolation and total,	was found to be 4.74%.
beam and diffuse components of insolation at the	
inclined PV surface, respectively	
Measured and simulated electrical PV outputs were	
compared on daily basis	

6. J.-H. Yoon, J. Song, S.-J. Lee, Practical application of building integrated photovoltaic (BIPV) system using transparent amorphous silicon thin-film PV module, 2011: Solar Energy 85(5), 723-733.

http://dx.doi.org/10.1016/j.solener.2010.12.026

Contexts	Outcomes
An analysis has been carried out on the first practical	From simulating influencing factors such
application in Korea of the design and installation of	as azimuth and shading, the measured
building integrated photovoltaic (BIPV) modules on	energy generation efficiency in the
the windows covering the front side of a building by	tested condition can be improved up to
using transparent thin-film amorphous silicon solar	47% by changing the building location in

cells.	terms of azimuth and shading, thus allowing better solar radiation for the
This analysis was performed through long-term monitoring of performance for 2 years.	PV module.
Electrical energy generation per unit power output was estimated through the 2 year monitoring of an actual BIPV system.	From the real application of the BIPV system, the installation of a PV module associated with azimuth and shading can be said to be the essentially influencing factors on PV performance
	Both factors can be useful design parameters in order to optimize a PV system for an architectural BIPV application.

7. T. Dwi Atmajaa, Façade and rooftop PV installation strategy for building integrated photo voltaic application, 2013: Energy Procedia 32, 105-114.

http://dx.doi.org/10.1016/j.egypro.2013.05.014

Contexts	Outcomes
Building integrated photo voltaic (BIPV) is an emerged	Recent calculations of the inclination
research topic to optimize building component	angle of attaching the PV module in the
replacement using certain types of photo voltaic (PV)	selected walls indicates that an
module.	optimum angle in horizontal and
	vertical inclination.
This paper conducts a strategic review on the	
optimum PV module installation to generate	The calculation also uses installation
electricity from the building envelope.	distance to module length ratio to
	achieve a greater solar insulation on the
The façades and rooftops would be an object of	PV modules.
building envelope to be deposited with a specific	
characteristic installation of PV module.	Other calculation also performed to
	observe effective load carrying capacity
	(ELCC) against PV penetration level to
	perceive the optimum PV penetration
	level for high ELCC without resulting
	operational problems.

8. D. Masa-Bote, E. Caamaño-Martín, Methodology for estimating building integrated photovoltaics electricity production under shadowing conditions and case study, 2014: RenewableandSustainableEnergyReviews31, 492–500.

http://dx.doi.org/10.1016/j.rser.2013.12.019

Contoute	Outeomos
Contexts	Outcomes
The electricity losses due to shadows over PV generator have an impact on the performance of BIPV systems (electricity losses). In the frame of that work a methodology to estimate electricity produced by BIPV systems which incorporated a model for shading losses, was developed. The methodology was validated by means of one-year experimental data from two similar PV systems (BI on the roof) of a building which belongs to the	The errors by the best performing model were less than 1% and 3% in annual and daily electricity estimation. The adoption of models which account for the reduced performance at low irradiance levels also improved the estimation of generated electricity.
Technical University of Madrid. The study included several weather conditions: clear, partially overcast, fully overcast sky.	The authors noted that the proposed methodology is simple, easy-to-use and can provide fast/accurate results at low costs. Also it could be applied for PV systems which are not BI.

3.6. BI, CPV

1. E. F. Fernández, F. Almonacid, N. Sarmah, P. Rodrigo, T.K. Mallick, P. Pérez-Higueras, A model based on artificial neuronal network for the prediction of the maximum power of a low concentration photovoltaic module for building integration, 2014: Solar Energy 100, 148–158.

http://dx.doi.org/10.1016/j.solener.2013.11.036

Contexts	Outcomes
Low concentration photovoltaic (LCPV) modules for BI are studied. The aim of that work was the development of an accurate model based on artificial neural networks (ANNs) to predict the maximum power (P) of a LCPV module for building integration under real conditions.	The model takes into account all the main important parameters that influence the electrical output of these systems: direct irradiance, diffuse irradiance, module temperature and the transverse and longitudinal incidence angles.
	The proposed model can be used for estimating the maximum power of a BI LCPV module with an adequate margin of error: R2 = 0.99. The ANN model had accurate performance for days in which the maximum power was mainly given by direct irradiance (clear days) and also for days in which the maximum power was mainly given by diffuse irradiance (cloudy days). Nevertheless, the

performance of the artificial network
based model had poorer results for the
diffuse irradiance component than for
the direct irradiance component.
Despite this fact, the ANN based model
can predict the maximum power of a BI
LCPV module with an adequate degree
of accuracy.
Despite this fact, the ANN based model can predict the maximum power of a BI LCPV module with an adequate degree of accuracy.

3.7. BA, Solar Cooling

1. K.F. Fong, C.K. Lee, T.T. Chow, Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong, 2012: Applied Energy 90, 189–195.

http://dx.doi.org/10.1016/j.apenergy.2011.06.013

Contexts	Outcomes
The performance of solar cooling systems with	It was found that in both cases, the
building-integrated (BI) solar collectors was simulated	adoption of BI solar collectors resulted
and the results compared with those having the solar	in a lower solar fraction (SF) and
collectors installed conventionally on the roof based	consequently a higher primary energy
on the weather data in Hong Kong.	consumption even though the zone
	loads were reduced.
Two types of solar collectors and the corresponding	
cooling systems, namely the flat-plate collectors for	The reduction in SF was more
absorption refrigeration and the PV panels for DC-	pronounced in the peak load season
driven vapour compression refrigeration, were used in	when the solar radiation was nearly
the analysis.	parallel to the solar collector surfaces
	during the daytimes, especially for
	those facing the south direction.
	It was concluded that the use of BI solar
	collectors in solar cooling systems
	should be restricted only to situations
	where the availability of the roof was
	limited or insufficient when applied in
	sub-tropical regions like Hong Kong.

3.8. General studies

1. Athienitis A., Modeling and Simulation of Passive and Active Solar Thermal Systems, 2012: Reference Module in Earth Systems and Environmental Sciences

Comprehensive Renewable Energy, 357–417, Volume 3: Solar Thermal Systems: Components and Applications.

http://dx.doi.org/10.1016/B978-0-08-087872-0.00311-5

Contexts	Outcomes
That chapter presented major passive solar	Various design methods were
technologies and systems, followed by in-depth	presented as well as an overview of the
sections on their modeling (using both analytical and	simulation techniques and programs
numerical models)	suitable for active solar heating as well
	as cooling systems
More recent developments were described with a	
focus on BIPVs and net-zero energy solar homes	The software programs described
	briefly in that chapter included F-chart,
	TRNSYS and WATSUN

2. T. Hwang, S. Kang, J. T. Kim, Optimization of the building integrated photovoltaic system in office Buildings - Focus on the orientation, inclined angle and installed area, 2012: Energy and Buildings 46, 92-104.

http://dx.doi.org/10.1016/j.enbuild.2011.10.041

Contexts	Outcomes
This study aims to analyze the maximum electric	As a result, the electric energy
energy production according to the inclination and	production due to the use of the PV
direction of photovoltaic (PV) installations and the	system can cover approximately 1–5%
effects of the installation distance to the module	of the electric energy consumption of a
length ratio.	typical office building in Korea in terms
	of proper combinations of the following
The annual solar insolation on PV panels was	installation factors: inclination, module
calculated for various façades of two buildings, and an	type, installation distance to module
analysis of different horizontal and vertical	length ratio, and direction.
inclinations of PV panels was also conducted in	
consideration of the effects of panel shading from	The research estimated the proportion
other panels and surrounding buildings.	of power generation by BIPV systems
	according to different types of PV
	modules and installation methods. The
	data could serve as a useful reference
	for the application of BIPV systems in
	buildings.

3. S. Sharples, H. Radhi, Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society, 2013: Renewable Energy 55, 150-159.

http://dx.doi.org/10.1016/j.renene.2012.11.034

Contexts	Outcomes
This paper assesses the technical and economic performance of PV technology integrated into residential buildings in the Gulf Cooperation Council (GCC) countries.	Through a systematic modelling analysis it is shown that the efficiency of PV system drops by 4-6% due to high range of module temperature and also a change in power output due to high ambient temperatures. Consequently, the outputs of horizontal and vertical PV modules are found to be less than estimates based on standard test conditions.
	Economically, this study shows that building integrated photovoltaic (BIPV) systems are not viable in GCC countries and cannot compete with conventional electricity sources on a unit cost basis.

4. W. Zhou, H. Yang, Z. Fan, A novel model for photovoltaic array performance prediction, 2007: Applied Energy 84, 1187–1198.

http://dx.doi.org/10.1016/j.apenergy.2007.04.006

Contexts	Outcomes
Based on the I–V curves, a novel and simple model was proposed. In order to validate the model, field measured data from one existing BIPV in Hong Kong was adopted and good agreements between simulated results/field data was found.	Five parameters were introduced to take account of all the non-linear effect of the environmental factors on PV module performance Model accuracy was demonstrated by comparing the predictions with the field data. The model was verified for several meteorological conditions (sunny, cloudy, four seasons). The results demonstrate acceptable accuracy of the model for modeling PV array outputs over various environmental conditions.

5. Kim J., Adaptive façade design for the daylighting performance in an office building: the investigation of an opening design strategy with cellular automata, 2013, International Journal of Low-Carbon Technologies 1-8.

doi: 10.1093/ijlct/ctt015

Contexts	Outcomes
The objective was the development of an innovative façade design strategy that comes from the development of digital technology and dynamic daylight performance measuring methods. The parameters were studied through the computational	Each CA design value was tested under static and dynamic sky condition in order to analyze the quality and quantity of daylight and visual comfort over the year. The proposed CA system
process of cellular automata (CA) to generate the several alternative opening patterns on building façade.	allowed changing the average opacity of building façade and tool advantage from the generative behavior for esthetics. The visualized daylight analysis maps with numeric data helped for the searching of the adaptive façade design.

6. T. Hong, C. Koo, J. Park, H. S. Park, A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system, 2013: Energy, 1-10.

http://dx.doi.org/10.1016/j.energy.2013.11.082

Contexts	Outcomes
A sensitivity analysis on how the impact factors of the	Several impact factors were adopted in
rooftop PV system affect its electricity generation was	the sensitivity analysis. The result of this
conducted. That study aimed to ultimately develop a	study showed that there were 1.12-,
GIS-based optimization model for estimating the	1.62- and 1.37-fold differences in the
electricity generation of a rooftop PV system.	annual electricity generation of the
	rooftop PV in South Korea due to the
	regional factor, the azimuth of the
	installed panel and the slope of the
	installed panel, respectively.

7. Lin Lu and Yang H. X., A study on simulations of the power output and practical models for Building Integrated Photovoltaic systems, 2004: Journal of Solar Energy Engineering 126(3), 929-935.

doi:10.1115/1.1701883

Contexts	Outcomes
A simple, practical, accurate model for describing the	Taking that MPO model as benchmark,
characteristics of PV power output was developed	two other application models from
(describing I-V characteristics of PV modules according	other studies were evaluated and
to the equivalent circuits of solar cells, by which an	examined. A simplified application
accurate but complicated model of the maximum	model for describing the maximum PV
power output (MPO) can be achieved).	power output was then derived from
	the results of the simulation. Once solar
	radiation on PVs and ambient

temperature are known, the power output of BIPV systems or PV systems can be calculated accurately and easily.

8. S. Karthikeyan, G. Ravikumar Solomon, V. Kumaresan, R. Velraj, Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications, 2014: Energy Conversion and Management 78, 74–80.

http://dx.doi.org/10.1016/j.enconman.2013.10.042

Contexts	Outcomes
(PCM) encapsulated spherical containers for low	The results of the simulations showed
temperature solar air heating applications. Parametric	that the size of the PCM ball, fluid inlet
analysis was performed using validated enthalpy	temperature and mass flow rate of the
based numerical model that considers the thermal	heat transfer fluid (HTF) influenced
gradient inside the PCM container.	respectively the heat transfer area in
th	the packed bed, temperature difference
be	between the HTF and PCM and the
su	surface convective heat transfer
co	coefficient between HTF and PCM balls.
Th	The poor thermal conductivity of the
PC	PCM had only negligible effect on heat
tr	transfer because of high surface
co	convective resistance provided by the
ai	air. The influence of various parameters
fo	for the selected range of values were
ar	analyzed using the charging time,
in	instantaneous heat stored and
cu	cumulative heat stored during the
ch	charging process.

4. Studies of Energetic Simulation (emphasis: building/system)

4.1. BI, Skin Façade

1. Saelens D., Roels S. and Hens H., The inlet temperature as a boundary condition for multiple-skin façade modeling, 2004: Energy and Buildings 36 (8), 825–835.

http://dx.doi.org/10.1016/j.enbuild.2004.01.005

Contexts	Outcomes
The results of numerical models for multiple-skin	By analysing the influence of the inlet
façades (MSFs) are very sensitive to inlet temperature	temperature, this work showed that a

 → to illustrate this, a sensitivity study on mechanically and naturally ventilated façade was conducted by means of a numerical model (cell-centred finite volume method) MSF model was also coupled to TRNSYS → energy performance analysis MSF model and building model Climatic conditions: Belgium, February 	reliable energy assessment needs a correct implementation of the boundary conditions and modelling parameters. Measurements showed that the assumption of an inlet temperature equal to the interior or exterior air temperature was usually not valid. A sensitivity study revealed the significance of the inlet temperature as a boundary condition for numerical multiple-skin façade models. Models to estimate the inlet temperature should take the heating and cooling because of contact with the bounding surfaces and heating due to solar radiation. In addition, the effects of a change of the airflow rate have to be considered.

2. R. Høseggen, B.J. Wachenfeldt, S.O. Hanssen, Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade?, 2008: Energy and Buildings 40, 821–827.

http://dx.doi.org/10.1016/j.enbuild.2007.05.015

Contexts	Outcomes
A planned office building in the city-centre of	Simulation results showed that the
Trondheim, Norway, was adopted as case for	energy demand for heating was about
considering whether a double-skin should be applied	20% higher for the single-skin façade
to the east façade in order to reduce the heating	with the basic window solution
demand, thus making the double-skin façade a	compared to the double-skin
profitable investment. The building was modeled both	alternative. Nevertheless, by switching
with and without a double-skin façade (building	to windows with an improved U-value
energy simulation program ESP-r). That work	in the single-skin alternative, the
described how a double-skin façade with controllable	difference in energy demand was
windows and hatches for natural ventilation can be	almost evened out. The number of
implemented in the simulation program.	hours with excessive temperatures was
	not significantly higher for the double-
	skin alternative. However, the predicted
	energy savings were not sufficient in
	order to make the application of a
	double-skin façade profitable.

4.2. BI, Trombe Wall

1. Bojic M., Johannes K. and Kuznik F., Optimizing energy and environmental performance of passive Trombe wall, 2013, Energy and Buildings 70, 279 – 286.

http://dx.doi.org/10.1016/j.enbuild.2013.11.062

Contexts	Outcomes
Energy and environmental performance: buildings	The results showed that the building
with and without Trombe walls	with Trombe walls in Lyon, France, by
	using solar energy may save around
I wo Irombe walls were adopted at the south side of a	20% operating energy during heating
Mozari house located in Lyon, France. The house	without Trombe walls
	without frombe wans.
The simulation was conducted by using EnergyPlus,	The environmental impact of the
Genopt and parametric algorithm	buildings was also examined.

4.3. BI, PVT

1. Kim J.H., Kim J.T., A simulation study of air-type building-integrated photovoltaic-thermal system2012: Energy Procedia 30, 1016 – 1024

http://dx.doi.org/10.1016/j.egypro.2012.11.114

Contexts	Outcomes
TRNSYS simulation was performed	It was concluded from the simulation
	result that BIPVT system was more
The electrical and thermal performance of air type	efficient compared to BIPV system
BIPVT system was evaluated	without ventilation.
The energy performance of a building was calculated	
considering air type BIPVT as a building envelop.	

4.4. BI, PV

1. Chow T. T., Fong K. F., He W., Lin Z. and Chan A. L. S., Performance evaluation of a PV ventilated window applying to office building of Hong Kong, 2007: Energy and Buildings 39, 643–650.

http://dx.doi.org/10.1016/j.enbuild.2006.09.014

Contexts	Outcomes
An energy model of a PV ventilated window system	The energy model of the PV ventilated
was developed, based on TMY weather data for Hong	window system was first introduced.
Kong	Based on that together with TMY

Energy model of the PV ventilated window: 2D	weather data for Hong Kong and the
computer model	daulight simulation canability of the
computer model	daylight simulation capability of the
	EnergyPlus program, the overall
Performance analysis of application: small office: 3 m	performance analysis was executed for
\times 3 m \times 3 m cubicle office within the perimeter zone	different window orientations. It was
of an office building; indoor temperature set points =	found that a solar cell transmittance
22°C in winter (from November to April next year) and	from 0.45 to 0.55 could achieve the best
25°C in summer (from May to October)	electricity saving.
The simulation results on daylight saving were	
obtained by using EnergyPlus simulation software	

2. J. Pérez-Alonso, M. Pérez-García, M. Pasamontes-Romera, A.J. Callejón-Ferre, Performance analysis and neural modelling of a greenhouse integrated photovoltaic system, 2012: Renewable and Sustainable Energy Reviews 16(7), 4675-4685.

http://dx.doi.org/10.1016/j.rser.2012.04.002

Contexts	Outcomes
Greenhouses can include added capabilities for the	The obtained results indicate that, for
energy generation by the integration of photovoltaic	the conditions of the undertaken
solar modules in their cladding provided that the	experiment, they early electricity
blocking effect of photo-synthetically active radiation	production normalised to the green
is not significant for plants growing.	house ground surface is 8.25 kWh/m ² ,
	concordant to previous findings for the
This work describes the results of an experience	used type of modules.
carried out at Almería (South Eastern Spain), where it	
has been built and monitored a 1.024 m ² pilot	An artificial neural network model has
photovoltaic green house.	been elaborated to predict the
	electricity instantaneous production of
The experimental setup has consisted of a green	the system, showing the suitability of
house roof 9.79% coverage ratio by means of 24	this modelling technique for complex
flexible thin film modules, installed in two different	and non linear systems, as it is the case
checker board configurations.	of the constructively integrated PV
	plants, either in green houses and
	buildings, where both impinging
	radiation and system configuration are
	highly constrained by the pre-existing
	structures.

3. T.T. Chow, J.W. Hand, P.A. Strachan, Building-integrated photovoltaic and thermal applications in a subtropical hotel building, 2003: Applied Thermal Engineering 23, 2035–2049.

http://dx.doi.org/10.1016/S1359-4311(03)00183-2

	-
Contexts	Outcomes
Comparative study of three different options in	The results revealed that the different
applying large-scale BIPVs in a coastal city at the South	design options exhibit short-term
China Sea. The computational model was based on a	electrical performance differences, but
260 m ² , mono-crystalline Si PV wall of a 30-storey	they have similar long-term electricity
hotel. The numerical analysis was conducted by ESP-r	yields. Nevertheless, some
building energy simulation software.	configurations performed much better
	in terms of reducing building air-
	conditioning loads.

4. C. Hachem, A. Athienitis, P. Fazio, Energy performance enhancement in multistory residential buildings, 2014: Applied Energy 116, 9–19.

http://dx.doi.org/10.1016/j.apenergy.2013.11.018

Contexts	Outcomes
The effect of increasing residential density in	Apartment buildings/passive solar
multistory buildings on the overall solar potential and	configurations were adopted: low, mid-,
energy use of these buildings was examined.	high- rise. All integration of PV systems
	in façades, in addition to roof surfaces
Hourly direct solar radiation was computed by	was considered. The study revealed that
EnergyPlus (ASHRAE model of clear sky applied to	investment in advanced design of
Montreal)	façades (such as folded-plate curtain
	walls) can substantially increase the
The Equivalent One-Diode Model (or "TRNSYS PV"	production of electricity and it can
model, EnergyPlus) was adopted to perform electricity	achieve net zero and surplus energy
generation	status in building over eight stories
	high.

4.5. General Studies

1. Clarke J.A, Johnstone C., Kelly N. and Strachan P. A., The simulation of Photovoltaic-Integrated building facades, 1997: 5th IBPSA Conference: Sept. 8-10, Prague, Czech

Contexts	Outcomes
Extension to the ESPr system: simulation of façade	Integration with within the ESP-r $ ightarrow$
and roof-integrated PVs	aspects of coupling: assignment of
	special behavior to multilayered
The algorithms were for predicting electrical power	construction nodes in order to
output as a function of module characteristics,	transform some part of their absorbed
incident solar radiation and module temperature. The	solar energy to electricity; use of an air
integration of the algorithm within ESP-r air and	flow network to transport heat from
power flow network models, to facilitate hybrid	nodes designated as PV cells and deliver
photovoltaic system studies was described	this heat to intra-building locations via

2. Kelly N. J., Towards a design environment for building integrated energy systems: the integration of electrical power flow modelling with building simulation, 1998: MSc thesis, Department of Mechanical Engineering. Energy Systems Research Unit University of Strathclyde, Glasgow, UK

Contexts	Outcomes
Power flow modeling: coupling the electrical network	Component models for BI energy
to the rest of the building model could be conducted	systems simulation: various component
by using 'hybrid' components that also exist in other	types could be added to ESP-r for use in
energy subsystems of the building model. These	the integrated simulation of the
hybrid components can supply the power flows	electrical network and BI energy
necessary for the solution of the electrical network $ ightarrow$	systems: the electrical conductors and
integration of the electrical network solver into ESP-r	transformers which couple the control
flexible, modular simultaneous solution process	volumes in the electrical network; the
	hybrid load and the plant components
	which draw power from the electrical
	network, while simultaneously affecting
	thermophysical conditions in other
	parts of building network; the hybrid
	and the plant components could be
	used in the modeling of BI energy
	systems
	Verification of the electrical network
	solver and hybrid model calibration

3. Kim K. H. and Han S. H., Integrated Towers: High Performance Facades, 2012: Conference WREF 2012, CO, US, 13-17 May.

Contexts	Outcomes
The analysis was based on the case study of high-rise	The authors noted that integration of
integrated towers located in two different climate	BIM and energy simulation tool
zones: Aurora Tower in Kuala Lumpur, Malaysia	provides timely efficient energy
located in Climate Zone 1A; New York Times building	verification and offers a powerful
in New York City located in Climate Zone 4A	framework toward solving many
	problems in contemporary building
That research adopted the integration of BIM	sustainability
(building information modeling) and energy	
simulation tool to facilitate workflow of 3D modeling	
and energy performance verification of building	
façades	

The work focused on three areas: heat gain,	
daylighting control benefits and solar energy	
potentials from building façades	

4. M. Bojić, M. Miletić, D. Cvetković, Optimization of size of overhangs with and without solar collectors, 2013: 26 th International Conference ECOS, Guilin, Guangxi, China, 2013, 16-19 July.

http://is.mfkg.kg.ac.rs/podaci/Dragan_Cvetkovic/106/D069final.pdf

Contexts	Outcomes
This paper presents the results of the optimization of	The objective function serves to
the size of overhangs with and without solar collectors	minimize the primary energy
for two summer houses that operate during a cooling	consumption needed for sanitary water
season in Serbia.	heating and space cooling of the house,
	and amount of embodied energy in
The first house only has overhangs. The second house	overhangs and solar collectors.
has overhangs covered by solar collectors.	
	Results show that overhangs depth
They are simulated and optimized by using EnergyPlus	depends on the use of solar collectors.
and Hooke Jeeves algorithm for their cooling season	Their depths also depend on their
operation. Then, optimal depths of the overhangs are	orientation.
found.	

5. N. Aste, R. S. Adhikari, L. C. Tagliabue, Solar integrated roof: Electrical and thermal production for a building renovation, 2012: Energy Procedia 30, 1042-1051.

http://dx.doi.org/10.1016/j.egypro.2012.11.117

Contexts	Outcomes
Solar renovation of a training Centre at Casargo,	The prototype of TIS system was
Lecco, Italy.	presented.
The technology used for the roof refurbishment is an	This paper presents the design details,
innovative system called TIS (Tetto Integrale	energy performance and economic
Solarizzato); which means solar integrated roof.	evaluation of solar integration roof of
	Casargo.
TIS is a modular covering system with the option to	
insert the various types of solar energy modules,	The building is under monitoring phase.
providing most suitable dimension and configuration	A comparison has been made between
for a specific application.	the monitored and simulated energy
	performance data.

6. S. A. Kalogirou, M. Bojic, Artificial neural networks for the prediction of the energy consumption of a passive solar building, 2000: Energy 25, 479–491.

http://dx.doi.org/10.1016/S0360-5442(99)00086-9

Contexts	Outcomes
Artificial neural networks (ANNs) were adopted for	The ANN modeling was able to predict
the prediction of the energy consumption of a passive	the energy consumption of a building
solar building. Building thermal behavior was	with acceptable accuracy. The
evaluated by using a dynamic thermal building (finite	application of ANNs revealed that it is
volumes and time marching).	possible to model such systems with a
	minimum amount of input data, thus
	providing the designer of such systems
	with the flexibility to test a number of
	systems quickly.

7. L. F. Sim, Numerical modelling of a solar thermal cooling system under arid weather conditions, 2013: Renewable Energy, In press.

http://dx.doi.org/10.1016/j.renene.2013.11.032

Contexts	Outcomes
A study about thermal cooling for an office (weather conditions: Doha, Qatar). The simulations were performed by using TRNSYS. Studied parameters: solar collector area, collector slope, tank volume, water flow rate, heat exchanger effectiveness.	The results revealed that the optimum system for 4.5 kW adsorption cooling required 23.4 m ² evacuated tube collector titled at 24° from horizontal with a water storage tank of 0.3 m ³ . The adsorption cooling system can reduce the electricity consumption by 47% in comparison with a compression cooling system.

8. A. Colmenar-Santos, J. Vale-Vale, D. Borge-Diez, R. Requena-Pérez, Solar thermal systems for high rise buildings with high consumption demand: Case study for a 5 star hotel in Sao Paulo, Brazil, 2014: Energy and Buildings 69, 481–489.

http://dx.doi.org/10.1016/j.enbuild.2013.11.036

Contexts	Outcomes
Solutions for solar water installations in high rise	The proposed solutions for solar hot
buildings were studied. The integration of solar	water systems for the case of high
collectors into the building, hot water distribution	rise building applications minimize
installation and solutions to minimize the risk of	the issues with the pressure
exposure to Legionella, were examined. The	distribution due to the height of the
requirements of solar thermal in developing	building. A case study about a 5-star
countries were examined: solar hot water	hotel clearly justified the
standards in Brazil (Sao Paulo). Software adopted:	installation of solar thermal systems
RETScreen	in buildings with a high demand for
	hot water.

5. Studies of Thermal Simulation (emphasis: building)

5.1. BI, Skin Façade

1. Gratia E. and De Hendre A., Greenhouse effect in double-skin façade, 2007: Energy and Buildings 39(2), 199–211.

http://dx.doi.org/10.1016/j.enbuild.2006.06.004

Contexts	Outcomes
TAS software for building thermal analysis was used	The factors that influence the
	greenhouse effect are solar radiation
Identification of the factors that influence greenhouse	level, orientation and shading devices
effect $ ightarrow$ impact of these parameters on cavity	use, opaque wall/window proportion of
temperature evolution	the interior façade, wind speed, colour
	of shading devices and of interior
Identified parameters: solar radiation level, cavity	façade, depth of the cavity of the
depth of the double-skin, glazing type, etc.	double-skin, glazing type in the interior
	façade and openings in the double-skin.
A middle-size office building was examined	
Climatic data assumptions: Belgian standard days	

2. Chan Y. C and Tzempelikos A., A Simulation and Experimental Study of the Impact of Passive and Active Façade Systems on the Energy performance of Building Perimeter Zones, 2012: ASHRAE Transactions 118(2), p. 149.

Contexts	Outcomes
A method for assessing the integrated energy	A simple private office with one exterior
performance of passive and active multi-section	window was adopted as an initial case
façade systems combined with lighting and thermal	study
controls of perimeter building zones by using an open	
source language	Experimental measurements (in full-
	scale laboratories with and without
A thermal network approach was adopted to predict	shading) were utilized to compare to
indoor thermal environmental conditions and annual	simulation results in order to validate
energy consumption of perimeter zones equipped	the model
with combinations of passive and active façade	
systems such as selective glazings, translucent panels,	The model was expanded and
motorized shades and blinds, in conjunction with	generalized to include the impact of
daylight-linked lighting controls	multi-sectional façades in order to
	evaluate the combined impact of
The model utilized anisotropic sky models for an	glazing and shading configurations on
accurate prediction of solar gains, variable angular	energy demand/thermal comfort
glazing properties and non-linear interior and exterior	
convection and radiation heat transfer coefficients	
together with transient internal gains obtained from	
transient lighting simulation	

5.2. General studies

1. Alemu A. T, Saman W. and Belusko M., A model for integrating passive and low energy airflow components into low rise buildings, 2012: Energy and Buildings 49, 148–157.

http://dx.doi.org/10.1016/j.enbuild.2012.02.002

Contexts	Outcomes
Passive airflow components which require simultaneous prediction of air temperature and flow	The output of the model was compared with well validated TRNSYS-COMIS
rate were integrated into a coupled building	software for a naturally ventilated
ventilation and thermal model	single zone building with a low and a high level large openings (space
That model allowed the assessment of a combination of passive features such as solar chimney and wind	dimensions: 5 m x 5 m x 3 m height)
induced earth-air tunnel for both natural and hybrid ventilation systems at the design stage \rightarrow the model could facilitate the design of buildings with passive cooling features thus, minimizing the need for conventional cooling	A simulation was conducted for a single day (the first day of January using the TRNSYS weather database for Adelaide, Australia)
Mathematical model: a multi zone building ventilation and thermal model with integrated passive cooling features. The model was quasi steady state for each simulation hour. Separate wind and buoyancy driven airflow components (including solar chimney and wind induced earth-air tunnel were added into the multizone ventilation model	
The thermal model was a quasi-steady model applied to lightweight structure and thermal capacitance was ignored. The internal heat load, solar load and the heat transfer through walls, windows, roof, ground and openings were taken into consideration	

6. Studies of Thermal Simulation (emphasis: system)

6.1. BI, Solar Thermal Collectors

1. Motte F., Notton G., Cristofari C. and Canaletti J. L., A building integrated solar collector: Performances characterization and first stage of numerical calculation, 2013: Renewable Energy 49, 1–5

http://dx.doi.org/10.1016/j.renene.2012.04.049

Contexts	Outcomes
A new concept of a solar collector for water heating,	Good agreement between numerical
patented, with high building integration, without any	and experimental results was found
visual impact was presented	
	At low reduced temperature values, the
Numerical calculations in Matlab by using a finite	thermal performances were found to be
difference model and an electrical analogy were	close to the conventional ones.
performed	However, the authors noted that it is
	necessary to optimize the shape of that
Thermal model: a nearly bi-dimensional model with	collector in order to improve thermal
the thermal transfers was developed; it was	insulation. This will be conducted by
composed of a serial assembling of one-dimensional	using the developed thermal model.
elementary models. Each model was based on a nodal	The next step will be to include in that
discretization of the solar collector.	model a differentiation between direct
	and diffuse radiation and to develop
	correlations between the thermal
	coefficients and the environmental
	parameters (e.g. sky temperature
	correlated to the clearness index).

2. F. Motte, G. Notton, Chr. Cristofari, J.-L. Canaletti, Design and modelling of a new patented thermal solar collector with high building integration, 2013: Applied Energy 102, 631-639.

http://dx.doi.org/10.1016/j.apenergy.2012.08.012

Contexts	Outcomes
A new concept of flat plate solar collector is	A numerical model is developed in Matlab
presented: its originality comes from its remarkable	environment using a finite difference
shape and from its integration into a rainwater	model and an electrical analogy.
gutter.	
	At last, the thermal model is validated
The complete solar collector consists in several	from experimental data under various
short modules connected serially.	meteorological situations.
	The adequacy of the model with the
	experimental data is shown for various
	temperatures inside the solar collector
	and for the water temperatures.

3. Anderson T. N., Duke M., Carson J. K., The effect of colour on the thermal performance of building integrated solar collectors, 2010: Solar Energy Materials and Solar Cells 94(2), 350–354.

http://dx.doi.org/10.1016/j.solmat.2009.10.012

Contexts	Outcomes
Experimental and theoretical work	The theoretical thermal efficiency of
	colored collectors was determined
One-dimensional steady- state thermal model based	
on the Hottel–Whillier–Bliss equations	Having demonstrated and validated the
	design model of the colored solar
Region/climatic conditions: Auckland, New Zealand	collectors, it was examined the fraction
	of a typical domestic water-heating load
	that could be provided by the various
	theoretical colored collectors. An F-
	chart was constructed for the operation
	of the collectors in Auckland, New
	Zealand
	Low-cost coloured mild steel collectors could potentially provide noticeable contributions to domestic water heating
	IOAUS.
	The performance of coloured solar collectors can be accurately modelled using a combination of experimental and numerical techniques.
	The use of coloured solar collectors will
	start to be an area that receives more
	attention than it has to date.

6.2. BI, Skin Façades

1. von Grabe J., A prediction tool for the temperature field of double facades, 2002: Energy and Buildings 34(9), 891–899.

http://dx.doi.org/10.1016/S0378-7788(02)00065-8

Contexts	Outcomes
Development and validation of a simulation algorithm for the temperature behaviour and the flow characteristics of double façades	It has been developed in order to obtain a tool which enables the energy consultant to make quick design decisions

2. Park C. S., Augenbroe G., Messadi T., Thitisawat M. and Sadegh N., Calibration of a lumped simulation model for double-skin façade systems, 2004: Energy and Buildings 36(11), 1117–1130.

http://dx.doi.org/10.1016/j.enbuild.2004.04.003

Contexts	Outcomes
Calibration of a simulation model of double-skin	The lumped models for double-skin
façade systems with controlled rotating louvers and	façade systems can be easily
ventilation openings	constructed based on a "grey box"
	approach, i.e., partly based on the
The approach of the investigation was based on a	lumped descriptions of dominant
parameter estimation technique and in situ	physical processes, and augmented by
monitoring of a full-scale element mounted on the	calibration parameters to make up for
south facing façade of an existing building	the simplifications.
The new approach was based on a postulated "minimalistic" lumped model which was calibrated on in-situ measurements	The model is very accurate in the prediction of the most relevant state variables, reliable for performance studies, and computationally light enough for model based optimal control.

3. Balocco C. and Colombari M., Thermal behaviour of interactive mechanically ventilated double glazed façade: Non-dimensional analysis, 2006: Energy and Buildings 38(1), 1–7.

http://dx.doi.org/10.1016/j.enbuild.2005.02.006

Contexts	Outcomes
Non-dimensional analysis is proposed as a method to	Applying non-dimensional analysis to a
analyze mechanically ventilated double glazed façade	mechanically ventilated double glass
energy performance. The 12 non-dimensional	façade, a correlation between 12
numbers defined can be used to describe thermal and	nondimensional numbers has been
energy performance of interactive façade designs. A	obtained. Model has been validated
comparison between Nusselt number solved by	using experimental data.
experimental data and Nusselt calculated by the	The proposed method is useful to study
validated multivariable correlation function is	thermal energy performances of
reported in the present paper. Due to its wide validity	mechanically ventilated double-skin
field the proposed method can be used to analyze	façades for different climatic
thermodynamic performances of glass double-skin	conditions, aspect ratio, shading device
façades with mechanical ventilation	systems and also different thermo-
	physical characteristics of two glasses.

4. Coussirat M., Guardo A., Jou E., Egusquiza E., Cuerva E. Alavedra P., Performance and influence of numerical sub-models on the CFD simulation of free and forced convection in double-glazed ventilated façades, 2008: Energy and Buildings 40 (10), 1781–1789.

http://dx.doi.org/10.1016/j.enbuild.2008.03.009
Contexts	Outcomes
Double-glazed façades	In this work, several modeling tests
	were carried out on a well-documented
CFD Fluent software: flow and heat transfer modeling	experimental test case taken from the
	open literature in order to obtain a
Undesirable building oveheating $ ightarrow$ Mediterranean	suitable model of the aforementioned
climates	thermo-fluid-dynamics effects.

5. Pérez-Grande I., Meseguer J. and Alonso G., Influence of glass properties on the performance of double-glazed facades, 2005: Applied Thermal Engineering 25 (17-18), 3163-3175.

http://dx.doi.org/10.1016/j.applthermaleng.2005.04.004

Contexts	Outcomes
Glass properties influence on the performance of	The thermo-fluid dynamics problem
double-glazed façades	was solved by finite-volume commercial
	code, FLUENT, with a standard k–ε
Continental climate areas with warm summers (these	turbulence model
façades increase dramatically the cooling	
requirements over summer months) $ ightarrow$ selection of	By giving emphasis on the thermal
appropriate glass	balance, it was showed that an
	appropriate selection of the glasses
	forming the channel can reduce the
	thermal load into the building by almost
	an order of magnitude. It was also
	demonstrated that an appropriate use
	of the air stream flowing between the
	glass surfaces can improve global
	thermal balance.

6. Guardo A., Coussirat M., Egusquiza E., Alavedra P. and Castilla R., A CFD approach to evaluate the influence of construction and operation parameters on the performance of Active Transparent Façades in Mediterranean climates, 2009: Energy and Buildings 41(5), 534–542.

http://dx.doi.org/10.1016/j.enbuild.2008.11.019

Contexts	Outcomes
Active Transparent Façades (ATF)	The parameters that affect the most the
Mediterranean climate $ ightarrow$ overheating	reduction on solar load gain are related
	with the optical properties of the glass.
Influence of construction/operation parameters of the	
ATF (such as optical properties of the materials,	An increase of the length-to-depth
geometrical relations of the façade or flow stream	ratio causes a decrease on the ATF
conditions) in terms of energy savings, measured as a	efficiency in terms of solar load gains.

reduction of the solar load entering the building.	
Climatic conditions: Barcelona, Spain.	
CFD simulations: RNG k-epsilon turbulence model (when needed) and P1 radiation model; Fluent software: 3D geometries.	

7. Nassim Safer N., Woloszyn M. and Roux J. J., Three-dimensional simulation with a CFD tool of the airflow phenomena in single floor double-skin façade equipped with a Venetian blind, 2005: Solar Energy 79(2), 193-203.

http://dx.doi.org/10.1016/j.solener.2004.09.016

Contexts	Outcomes
Modelling of a compact double-skin façade equipped with a venetian blind and forced ventilation	The CFD approach enables accurate computations of the velocity–pressure fields inside the channel of ventilated
The modelling was conducted by using CFD approach to assess the air movement within the ventilated	double-skin façades
façade channel. Three-dimensional airflow was modelled by using a homogeneous porous media representation, in order to reduce the size of the mathematical model. A parametric study was proposed, analyzing the impact of three parameters on the airflow development: slat tilt angle, blind position, air outlet position	The global double skin façade model using the velocity averages and the airflow rates inside the channel of the double-skin façades will be derived from these CFD results
The commercial CFD tool FLUENT 6.0.20 was utilized, based on the finite-volume method and the SIMPLE solving algorithm	

8. Pasut W. and De Carli M., Evaluation of various CFD modelling strategies in predicting air flow and temperature in a naturally ventilated double skin façade, 2012: Applied Thermal Engineering 37, 267–274.

http://dx.doi.org/10.1016/j.applthermaleng.2011.11.028

Contexts	Outcomes
This paper showed, through a sensitivity analysis, a	A CFD model for the natural ventilated
good strategy for carrying out CFD simulation of	double skin façade was developed. The
double skin façades.	model can be used to predict the
	airflow patterns, air temperature and
The validation of the results was based on	air velocity distributions, and heat flux
experimental data from the literature	from gap into the room.

The paper provides a discussion about factors which	The model was validated using
are important in the simulation.	experimental data collected in a full-
	scale double skin module test facility by
	Mai et al.

9. Jiru T. E. and Haghighat F., Modeling ventilated double skin façade - A zonal approach, 2008: Energy and Buildings 40(8), 1567-1576.

http://dx.doi.org/10.1016/j.enbuild.2008.02.017

Contouto	Outcomes
Contexts	Outcomes
In the zonal approach, the DSF can be divided into a	The zonal models can be used to assess
number of control volumes, using two or three-	the performance of the DSF system
dimensional cells, which are usually larger than the	with venetian blinds.
cells normally used in CFD. The advantage of using the	
zonal approach is that the resulting systems of	The results revealed that the zonal
algebraic equations are smaller and much easier to	models can be used to assess the
solve than the CFD. The zonal models can provide	performance of the DSF system with
information on airflow and temperature distribution	venetian blinds. The zonal models
in a ventilated space faster than CFD, but with more	provided more detailed information
accuracy and detail than lumped and control-volume	(which is not possible for the lumped
models.	and the control-volume models).
	,
Application of zonal approach for modeling of airflow	Parametric study was also conducted in
and temperature in a ventilated double skin facades	order to assess the influence of cavity
(DSF)	height: inlet mass flow rate: and
	presence of venetian blinds on the
The zonal airflow equation power-law was employed	outlet-inlet temperature difference. The
to calculate the airflow through the shading device	result demonstrated that the influence
and cavities. The zonal energy equation was adopted	of changing the values of each
to evaluate the temperature distribution in the DCC	or changing the values of each
	parameter was more apparent during
system.	the day than during the hight. The DSF
	model developed can further be
The predicted temperature distributions were verified	integrated into Building Simulation tool
by using measured values and parametric studies	that includes HVAC plant and allows the
were conducted in order to identify the influence of	evaluation of the use of control
height, flow rate and presence of venetian blinds on	mechanisms in the DSF and their
the inlet-outlet temperature difference.	influence on the energy consumption of
	the HVAC system.
The case used for the development and the	
verification of the DSF models: experimental test cell	
at the Dipartimento di Energetica, Politecnico di	
Torino, Italy.	

10. W.J. Stec, A.H.C. van Paassen, A. Maziarz, Modelling the double skin façade with plants, 2005: Energy and Buildings 37, 419–427.

http://dx.doi.org/10.1016/j.enbuild.2004.08.008

Contexts	Outcomes
Plants in office buildings can provide several	The results revealed that In general
advantages. These are mostly related with thermal,	plants created more effective shading
aesthetic, psychological, comfort level and sound	system than blinds providing advantages
attenuation. That research at TU Delft aimed in	such as: for the same solar radiation, the
defining the thermal performance of the double skin	temperature raise of the plants was
façade with plants. A simulation model was	about twice lower than that for the
developed and validated. After validating, the	blinds; the temperature of the plants
simulation model could analyze the influence of	never exceeded the temperature of
plants on the performance of the double skin façade.	35°C, when blinds could exceed 55°C;
	plants in the double skin façade reduced
The simulation model was built by SimulinkTM. The	cooling capacity by almost 20%.
thermal model was represented by the heat exchange	
between the layers of the façade.	

6.3. Bl, Pipes

1. Albanese M. V., Robinson B. S., Brehob E. G. and Sharp M. K., Simulated and experimental performance of a heat pipe assisted solar wall, 2012: Solar Energy 86 (5), 1552–1562.

http://dx.doi.org/10.1016/j.solener.2012.02.017

Contexts	Outcomes
Simplified, thermal resistance-based computer models	The heat pipe system provided
were developed to simulate the performance of direct	substantial gains in performance
gain, indirect gain and integrated heat pipe passive solar	relative to conventional direct and
systems	indirect gain passive solar systems
	and, thus, presents a promising
A computer model was developed to further investigate	alternative for reducing building
the feasibility of heat pipe integrated walls in a range of	energy use.
climates; a parametric study was conducted to	
determine the design features that have a significant	Economic performance depends on
effect on performance, a prototype heat pipe wall was	the climate and the load to collector
constructed and tested to provide validation data	ratio, as well as a number of factors
MatLab codes were created to simulate hourly	related to the costs of the system
performance of the heat pipe system, as well as direct	and of conventional heating.
gain and concrete and water wall indirect gain systems;	
thermal network approach was adopted	
- An anisotropic model was utilized (three components:	
diffuse radiation – uniform, circumsolar, horizon	
brightening).	

Four cities were chosen to provide a range of insolation
and temperatures: Albuquerque (New Mexico, the
warmest and clearest of the four climates), Rock Springs
(Wyoming, USA), Louisville (Kentucky, USA), Madison
(Wisconsin, USA).

2. Hassan M. M. and Beliveau Y., Design, construction and performance prediction of integrated solar roof collectors using finite element analysis, 2007: Construction and Building Materials 21(5), 1069-1078.

http://dx.doi.org/10.1016/j.conbuildmat.2006.01.001

Contexts	Outcomes
An integrated roof solar collector was designed	The models were used to predict the
	optimum set of variables that can be
The integrated roof solar collector consisted of a 6.35	used in buildings in order to achieve
mm single glass panel with a selective surface,	adequate thermal comfort.
followed by a 1-mm air-gap. The thermal collecting	
medium was a fluid (water with antifreeze) enclosed	Coupled conduction, forced convection,
copper pipes. The pipes were laid within concrete	long wave thermal radiation modes of
cavities to minimize construction cost and time as well	heat transfer were considered in the
as to reduce convection losses. The copper pipes were	developed models.
connected together by means of a 1 mm copper plate	
absorber.	A specific location (Blacksburg, Virginia,
	USA) was modelled.
3D finite element models were developed to evaluate	
the thermal performance of the integrated roof solar	ABAQUS software version 5.8 was used
collector.	for finite element modelling of the solar
	roof panel.

3. Zhu Q., Xu X., Wang J. and Xiao F., Development of dynamic simplified thermal models of active pipeembedded building envelopes using genetic algorithm, 2014: International Journal of Thermal Sciences 76, 258–272.

http://dx.doi.org/10.1016/j.ijthermalsci.2013.09.008

Contexts	Outcomes
New building envelope: active pipe-embedded	The optimal simplified model provides
building envelope $ ightarrow$ external wall (or roof) with pipes	reasonable and accurate performance
embedded in it (may include PCM) $ ightarrow$ advantages:	prediction whatever for the pipe-
utilizes directly low-grade energy sources for reducing	embedded light weight building wall,
building cooling/heating load and improving indoor	the pipe-embedded medium weight
thermal comfort.	building wall, the pipe-embedded heavy

	weight building wall.
Dynamic, simplified thermal model of this structure with the thermal network structure of lumped thermal mass and the parameter identification of the simplified model based on frequency characteristic analysis. These resistances and capacitances are identified in frequency domain by using generic algorithm (GA) by comparing the frequency characteristics of the simplified model with the theoretical frequency characteristics of this structure obtained with Frequency-Domain Finite Difference (FDFD) method - Firstly, the FDFD model of this structure was established and the theoretical frequency characteristics under various disturbances were calculated for the reference of parameter identification.	 weight building wall. The model accuracy may differ depending on the wall physical properties. The optimal model of the pipe- embedded light weighted wall may represent the theoretical frequency characteristics the best while the optimal models of the pipe-embedded medium weighted wall and the pipe- embedded heavy weighted wall present similar accuracy. In general, the simplified RC model is a
Then, an equivalent dynamic simplified thermal model with lump thermal network structure was developed and its frequency characteristics were also deduced and calculated.	good model for predicting the heat transfer performance of this structure.
Finally, the GA estimator was adopted to identify these parameters of the simplified model for allowing the frequency responses of the simplified model to match the theoretical frequency responses by using the FDFD method.	
Performance prediction of this structure under realistic weather conditions, indoor air condition and circulating water temperature condition for practical applications (China).	

6.4. BI, Solar Chimney

1. Ong K. S., A mathematical model of a solar chimney, 2003: Renewable Energy 28(7), 1047–1060.

http://dx.doi.org/10.1016/S0960-1481(02)00057-5

Contexts	Outcomes
Analytical, physical model / thermal resistance	The thermal performance of the solar
network.	chimney as determined from the glass,
A wall-type solar chimney was examined (a glass cover which with the other three solid walls of the chimney form a channel through which the heated air could	wall and air temperatures, air mass flow rate and instantaneous heat collection efficiency of the chimney are presented.
	Satisfactory correlation obtained.

rise and flow by natural convection).	
Steady-state heat transfer equations \rightarrow matrix- inversion solution procedure.	

6.5. BI, Trombe Wall

1. Jubran B. A., Hamdan M. A. and Manfalouti W., Modelling free convection in a Trombe wall, 1991: Renewable Energy 1 (3–4), 351–360.

http://dx.doi.org/10.1016/0960-1481(91)90044-P

Contexts	Outcomes
Numerical model for laminar, free convection flow in	The variation of fluid velocity,
Trombe wall and a modified version of the	temperature and the average Nusselt
conventional Trombe wall.	number have been determined
	numerically for selected tilt angles of
Finite difference method.	the glass wall for the modified version
	of the Trombe wall.
	It was found that there is a significant
	effect of the glass wall inclination on
	the average Nusselt number.

2. Ben Yedder R., Du Z.-G. and Bilgen E., Numerical study of laminar natural convection in composite Trombe wall systems, 1990: Solar & Wind Technology7(6), 675–683.

http://dx.doi.org/10.1016/0741-983X(90)90042-Z

Contexts	Outcomes
Natural convection problem in a composite Trombe	The aspect ratio A has a small influence
wall solar collector.	on the heat transfer and that other
	geometric parameters such as orifice
SIMPLER method was used (control volumes).	position, channel size and width have
	important effects on the useful energy
Model for natural convention in cavities.	transmitted to the dwelling.
Flow: steady, laminar, 2D.	

3. Koyunbabaa B. K., Yilmaz Z. and Ulgen K., An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system, 2013: Energy and Buildings 67, 680–688.

http://dx.doi.org/10.1016/j.enbuild.2011.06.031

Contexts	Outcomes
A two-dimensional simulation model of a naturally	This study has shown the capability of a
ventilated BIPV Trombe wall system for winter period	CFD code to predict the radiation,
to be $ ightarrow$ applied to different locations with different	conduction and natural convection in a
climatic conditions, PV types, thermal mass samples,	BIPV Trombe wall system. The k-epsilon
etc.	turbulence model was used to conduct
	the CFD simulations on the meshed
The commercial CFD code Ansys CFX was adopted to	structure. Radiation heat transfer was
model air flow and heat transfer with the Navier–	modeled using Monte Carlo model.
Stokes equations.	
Annua CEV beard on finite values to the inve	
Ansys CFX based on finite volume technique.	
Validation of the model with experimental results of a	
BIPV Trombe wall built in Izmir, Turkey	
An energy analysis for determining the performance	
of a BIPV Trombe wall integrated to the facade of a	
room was carried out (based on transient condition).	
CFD was used to predict temperature and velocity	
distribution in the test room model.	
The simulations for two-dimensional model of BIPV	
Trombe wall system were carried out for February 4–	
7th, 2008.	
Eventimental set up at Colar Energy Institute. Fre	
Experimental set-up at solar Energy institute, Ege	
Oniversity Campus, Izinii, Turkey.	

6.6. BI, PVT

1. Anderson T.N., Duke M., Morrison G.L. and Carson J.K., Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector, 2009: Solar Energy 83(4), 445–455.

http://dx.doi.org/10.1016/j.solener.2008.08.013

Contexts	Outcomes
A novel building integrated photovoltaic/thermal	The collector base material made little
(BIPVT) solar collector was theoretically analyzed	difference to the thermal efficiency of
through a modified Hottel–Whillier model	the BIPVT suggests that lower cost
The model was validated with experimental data from	materials, such as steel, could be
testing on a prototype BIPVT collector.	utilised for these systems.
One dimensional steady state thermal model	The disadvantage of using steel is that
	the electrical efficiency would be

The electrical efficiency was calculated based on the difference between mean BIPVT temperature and	decreased marginally.
Nominal Operating Cell Temperature (NOCT) (298 K).	Good thermal contact between the PV
	cells and the absorber needs to be
	made; this could be achieved using
	thermally conductive adhesives and will
	improve both the electrical and thermal
	efficiencies of the system.
	Increase in the transmittance/
	absorptance product results in the
	greatest increase in thermal efficiency
	of all the parameters assessed, without
	greatly reducing the electrical
	efficiency.
	The use of unglazed BIPVT systems in
	conjunction with heat pumps could
	present interesting possibilities.
	Significant potential exists to utilise the
	low natural convection heat transfer in
	the attic at the rear of the BIPVT to act
	as an insulating layer rather than using
	additional insulation material. The use
	of this air layer would allow the
	material cost of such a system to be
	significantly reduced.
1	

2. Ji J., Chow T. T. and He W., Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, 2003: Building and Environment 38 (11), 1327–1334.

http://dx.doi.org/10.1016/S0360-1323(03)00115-X

Contexts	Outcomes
Based on the heat transfer analysis on a west-facing	The simulation program could
PVT collector wall with typical weather data of Hong	determine the energy performance of
Kong, a computational thermal model was developed.	PV/hot water collector system with any
	performance characteristic of PV panel,
Based on the thermal model described above, a	any climatic region and for any
simulation program HYBRIDPV-1.0 (in FORTRAN) was	orientation of the collector wall $ ightarrow$
developed.	hourly TRY weather data in Hong Kong
	was used as a data input for the
	simulation program.

3. Ji J., Han J., Chow T. T., Yi H., Lu J., He W. and Sun W., Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system, 2006: Energy and Buildings 38(12), 1380-1387.

http://dx.doi.org/10.1016/j.enbuild.2006.02.010

Contexts	Outcomes
Façade-integrated BiPVT	The increase of working fluid mass flow
	rate is beneficial for PV cooling.
A numerical model was developed by modifying the	
Hottel–Whillier model, which was originally for the	System operation at the optimum mass
thermal analysis of flat-plate solar thermal collectors.	flow rate improves the thermal
	performance of the system and meets
Computer simulations were performed to analyze	the PV cooling requirement so that a
system performance.	better electrical performance can also
	be achieved.
The combined effects of the solar cell packing factor	
and the water mass flow rate on the thermal and	
electrical efficiencies were examined.	

4. Chen Y., Galal K. and Athienitis A. K., Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab, 2010: Solar Energy 84 (11), 1908–1919.

http://dx.doi.org/10.1016/j.solener.2010.06.012

Contexts	Outcomes
Modeling and design of a BIPVT system thermally	A simplified three-dimensional, control
coupled with a ventilated concrete slab (VCS) adopted	volume, explicit finite difference
in a prefabricated, two-storey detached, low energy	thermal model was developed to
solar house and their performance assessment based	simulate the thermal performance of
on monitored data.	the constructed VCS.
Climatic conditions: Canada (cold climate regions with cold but sunny winters).	The modelling approach can be applied to other types of VCS.
	The developed model is showed to be appropriate for design purposes and for study of control strategies.

5. Aelenei L. and Pereira R., Innovative Solutions for Net Zero-Energy Building: BIPV-PCM System – Modeling, Design and Thermal Performance, 2013: IEEE, IYCE 2013 Conference, 6-8 June, Siofok, Hungary.

http://dx.doi.org/10.1109/IYCE.2013.6604162

Contexts	Outcomes
Numerical thermal analysis of two different systems	The results revealed that the system
for integrating on building façade: BIPVT and BIPVT-	using PCM decreased the temperature
PCM (Phase Change Material).	inside the air cavity and thus, the
	system was more stable due to the
A dynamic model was simulated using the real climatic	storage of solar gains as latent heat in
data of winter time measured on the building site	the PCM wall. The thermal efficiency of
(Lisbon, Portugal).	the ventilated BIPVT was higher than
	the ventilated BIPVT-PCM because of
1D numerical dynamic simulation model inside the	the airflow at elevated temperature
control volume; fully finite difference scheme;	into the room. Nevertheless, after few
programming MATLAB/SIMULINK [®] with SIMSCAPE [®]	hours, the two systems efficiencies
library.	appeared to be close to each other.
	That made PCM a reasonable option.

6. Ghani F., Duke M. and Carson J. K., Effect of flow distribution on the photovoltaic performance of a building integrated photovoltaic/thermal (BIPV/T) collector, 2012: Solar Energy 86(5), 1518-1530.

http://dx.doi.org/10.1016/j.solener.2012.02.013

Contexts	Outcomes
BIPVT: effect of flow distribution on PV performance	The results showed that the flow
	distribution within the collector will
A three step numerical analysis was conducted to	have a significant influence on the
model flow distribution, temperature variation, PV	photovoltaic performance of a hybrid
yield for a PVT collector of various design (manifold	PVT collector. For the case where the
sizes), geometric shape (aspect ratio), operating	flow distribution was most uniform, PV
characteristics in order to vary flow uniformity within	performance was improved by over 9%
the collector.	in comparison to a traditional PV
	collector operating under the same
CFD; FEA analysis $ ightarrow$ Heat transfer analysis $ ightarrow$ PV	conditions. However, for poor flow the
modelling.	performance was only improved by
	approximately 2%. It was found that
All simulations were conducted by using Autodesk	several parameters influence flow
Simulation Multi-physics 2012 software.	distribution: e.g. manifold to riser pipe
	ratio (a ratio of 4:1 was found to be
	ideal and that increasing to a 6:1 ratio
	offered negligible improvement). It was
	also found that array geometry
	(characterised by its aspect ratio in this
	study) is important for both flow
	distribution and PV yield. That study
	identified that optimal mass flow rate

was dependent on array shape or aspect ratio.

7. Liao L., Athienitis A., Park K.-W., Collins M. and Poissant Y., Numerical study of conjugate heat transfer in a bipv-thermal system, 2005: ASME 2005, Orlando, Florida, USA, August 6–12.

Contexts	Outcomes
CFD study of a BIPVT system which generated both	Experimental measurements: full scale
electricity and thermal energy.	outdoor test facility at Concordia
	University (Canada) showed good
The conjugate heat transfer in the BIPVT system cavity	agreement with the CFD model.
was studied with a 2-D CFD model while the k- ϵ model	
was used to simulate the turbulent flow and	Average and local convective heat
convective heat transfer in the cavity, in addition to	transfer coefficients were generated
buoyancy effect.	and PV panel average temperature and
	local cell temperatures were calculated
The longwave radiation between boundary surfaces	and compared with the data from the
was also modelled.	experiments.

6.7. BI, PV

1. Fung T. Y. Y. and Yang H., Study on thermal performance of semi-transparent building-integrated photovoltaic glazings, 2008: Energy and Buildings 40(3), 341–350.

http://dx.doi.org/10.1016/j.enbuild.2007.03.002

Contexts	Outcomes
A one-dimensional transient simulation model, the	The SPVHG model can be applied for
Semi-transparent Photovoltaic module Heat Gain	simulating various scenarios.
(SPVHG) model, for the thermal performance of the	
semi-transparent photovoltaic (PV) modules was	Annual total heat gains through the
developed and experimentally validated.	semi-transparent BIPVs under different
	scenarios were simulated by means of
	the SPVHG model .
	Annual thermal performance (using the
	SPVHG model): climatic data for Hong
	Kong.
	The total heat gain follows the variation
	of solar radiation.
	The total heat gain through the D)(
	rine total neat gain through the PV
	module is dominated by solar heat gain.

2. Charron R. and Athienitis A. K., Optimization of the performance of double-façades with integrated photovoltaic panels and motorized blinds, 2006: Solar Energy 80(5), 482–491.

http://dx.doi.org/10.1016/j.solener.2005.05.004

Contexts	Outcomes
Double-façades with integrated photovoltaics (PV) and	A theoretical investigation of the
motorized blinds.	performance of double façades with
	integrated photovoltaics and motorized
One-dimensional finite-difference thermal model is	blinds was presented for the case of
developed, with an algorithm that iteratively	forced ventilation.
determines which convective heat transfer coefficient	
correlation to use for each surface inside the cavity	When the PVs were installed in the
using expressions that consider system characteristics	middle of the cavity, air flows on both
and temperature distribution.	sides, increasing PV section overall
	(thermal-electric) efficiency by about
Environmental conditions used in the model:	25%, but lowered electricity generation
representative of what would be experienced in	by 21%. Integrating 0.015 m long, 0.002
Montreal, Canada.	m wide fins to the PV back plate
	resulted to a similar increase in
	efficiency without compromising
	electricity generation. The placing of
	the blind in the middle of the cavity
	increased the vision section efficiency
	by 5%. By adopting that approach to
	optimize performance can lead to
	combined thermal-electric efficiencies
	of over 60%.

3. Gan G., Numerical determination of adequate air gaps for building-integrated photovoltaics, 2009: Solar Energy 83(8), 1253-1273.

http://dx.doi.org/10.1016/j.solener.2009.02.008

Contexts	Outcomes
CFD software FLUENT (2005) was adopted for	CFD has been used to predict the effect
modeling of fluid flow and heat transfer around PV	of air gap size on the PV performance in
modules mounted on pitched roofs and in front of a	terms of cell temperature for a range of
vertical façade.	roof pitches and PV panel lengths at

	different solar heat gain levels.
Modelling was performed for realistic PV modules	
(type BP 485) and for a range of roof pitches and gap	The CFD technique can be used to
sizes.	predict the required air gap for a given
	type of module and method of building
The modelling was two-dimensional for heat and fluid flow.	integration.
In order to ascertain the reliability of CED modelling	
the model was validated for buoyancy-induced fluid	
flow and heat transfer in a tall open air cavity.	
The RNG k-e turbulence model was utilized for	
modelling turbulent air flow and heat transfer.	
Anothing the interval set was fixed at 20° C while the	
Ambient air temperature was fixed at 20 C while the incident solar radiation was first fixed at 1000 W/m^2	
and then varied with inclination of roof mounted PV	
modules for an example location.	
·	
A discrete transfer radiation model was adopted for	
modelling the radiation heat transfer from the	
modules to surroundings.	

4. N. Friling, M. J. Jiménez, H. Bloem, H. Madsen, Modelling the heat dynamics of building integrated and ventilated photovoltaic modules, 2009: Energy and Buildings 41(10), 1051-1057.

http://dx.doi.org/10.1016/j.enbuild.2009.05.018

Contexts	Outcomes
This paper deals with mathematical modelling of the	The analysis has revealed that it is
heat transfer of building integrated photovoltaic	necessary to use non-linear state space
(BIPV) modules.	models in order to obtain a satisfactory
	description of the PV module
The experiment and data originate from a test	temperature, and in order to be able to
reference module the EC-JRC Ispra. The set-up	distinguish the variations in the set-up.
provides the opportunity of changing physical	
parameters, the ventilation speed and the type of air	The heat transfer is increased when the
flow, and this makes it possible to determine the	forced ventilation velocity is increased,
preferable set-up.	while the change in type of air flow
	does not have as striking influence.
The models are first order stochastic state space	The residual analysis show that the best
models.	description of the PV module
	temperature is obtained when fins,
	disturbing the laminar flow and making
	it turbulent, are applied in the set-up

combined with high level of air flow.
The improved description by the model is mainly seen in periods with high solar radiation.

6.8. BI, Several systems

1. Sanjuan C., Suárez M.J., González M., Pistono J. and Blanco E., Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade, 2011: Solar Energy 85(9), 1851–1863.

http://dx.doi.org/10.1016/j.solener.2011.04.028

Contexts	Outcomes
Open-joint ventilated façade (OJVF): a building system	The three-dimensional CFD model
in which coating material (metallic, ceramic, stone or	developed to simulate a typical Open
composite) is hanged by means of a metallic-frame	Joint Ventilated Façade has enabled a
structure to the exterior face of the wall, creating an	better understanding of the ventilation
air cavity between wall and slab $ ightarrow$ buoyancy effect	effect induced by the solar radiation in
and thus, ability to reduce cooling thermal loads.	the air gap of the façade.
Phenomena produced on a typical open joint	Velocity profiles, together with
ventilated façade and comparison of its energy	temperature and heat flux distributions
performance with that of a conventional sealed air	have been compared with those
cavity façade.	obtained in a conventional sealed cavity
	façade.
The thermo fluid-dynamic behavior of both systems	
was analyzed with CFD.	The model has been also used to
	compare the thermal performance of
The numerical model employed a CFD code (FLUENT	both façades for the specific climatic
6.3) to analyze the thermal and fluid dynamic	conditions of Madrid (Spain).
phenomena taking place in OJVF.	
CED software solved Navier–Stokes equations	
(including energy conservation equation) using finite	
volume method.	
3D simulations were conducted.	
Climatic data: Madrid Spain (Cantinental	
Climatic data: Madrid, Spain (Continental	
iviediterranean climate).	

2. Chen Y., Athienitis A. K. and Galal K. E., Frequency domain and finite difference modeling of ventilated concrete slabs and comparison with field measurements: Part 2. Application, 2013: International Journal of Heat and Mass Transfer 66, 957–966.

Contexts	Outcomes
Contexts Frequency response (FR) and lumped-parameter finite difference (LPFD) approaches for the thermal modeling of building-integrated thermal energy storage (BITES) systems. The results are compared to each other and with field- measured data from a solar demonstration house with a ventilated concrete slab (VCS).	OutcomesThe modelling techniques are applied totwo kinds of VCS – one has air channelat the bottom of the mass (VCS-b) whilethe other kind has hollow cores as airchannel (VCS-c).The explicit LPFD and FR modelsgenerate almost identical outcomesunder periodic conditions.The accuracies of differentdiscretization configurations andchoices of time step were quantified.Time step of half an hour for FR modelstypically resulted in less than 3% errorin the thermal performance. For LPFDmodels, discretization with Biot numberless than 0.5 can reduce error to about5%. Larger Biot number tended tooverestimate the heat flow from air tothe slab over time. For practical slabthickness (0.1-0.2 m), simulation resultsfrom 2-layer VCS-b and 3-layer VCS-cmodels with time step of half an hourshowed errors less than 9%. LPFD
	models with time step of half an hour showed errors less than 9%. LPFD simulation results under non-periodic conditions were presented for VCS-b and they were compared with field- measured data from a near net-zero energy solar house.

3. Palmero-Marrero A. I. and Oliveira A. C., Evaluation of a solar thermal system using building louvre shading devices, 2006: Solar Energy 80(5), 545 – 554.

http://dx.doi.org/10.1016/j.solener.2005.04.003

Contexts	Outcomes
Modification of existing louvre designs to integrate a	In the models, steady state heat
solar collector in the shading device was performed $ ightarrow$	transfer was assumed (negligible
evaluation of a thermal solar system for water	thermal inertia) while the models
heating.	consisted of 4–6 heat balance
	equations, depending on the
A numerical model for the integrated solar collector	configuration, stating that the sum of all

was developed for different configurations and the collector efficiency was evaluated for each configuration.	incoming fluxes is equal to the sum of all outgoing fluxes.
System thermal performance was obtained for the climatic conditions of: Lisbon (Portugal), Tenerife (Spain).	
The different configurations which were considered for the integrated collector were: collector with tubes; collector with larger channels; collector with smaller channels and transparent cover area.	

4. Z. Wang, Z. Duan, X. Zhao, M. Chen, Dynamic performance of a façade-based solar loop heat pipe water heating system, 2012: Solar Energy 86, 1632–1647.

http://dx.doi.org/10.1016/j.solener.2012.02.031

Contexts	Outcomes
Study of a novel façade-based solar loop heat pipe (LHP) water heating system: theoretically and experimentally.	Two types of glass covers, i.e., double glazed/evacuated tubes and single- glazing plate, were adopted. The double-glazed/evacuated-tube system showed better performance than the single-glazing one.

5. Manz H., Numerical simulation of heat transfer by natural convection in cavities of facade elements, 2003: Energy and Buildings 35, 305–311.

http://dx.doi.org/10.1016/S0378-7788(02)00088-9

Contexts	Outcomes
Heat transfer by the natural convection of air layers	The presented method can be
within vertical, rectangular cavities was examined for	considered suitable for calculating
applications in building façade elements, such as	convective heat transfer in tall, vertical
insulating glazing units, double-skin façades, doors,	cavities in different types of façade
etc. by using a CFD code (commercial CFD code	elements.
FLOVENT, Version 3.1; finite volume method).	
	That work included combination of an
	optical model for determining absorbed
	solar radiation in layers of façade
	elements such as glass panes, roller
	blinds, etc. with CFD modeling in order
	to increase the reliability of predictions

of these elements thermal transmission and total solar energy transmission.

6.9. BA, Several systems

1. D. A.G. Redpath, P. Dalzell, P. W. Griffiths and N. J. Hewitt, Investigation of concentrating and nonconcentrating evacuated tube solar water heaters using 2D particle imaging velocimetry, 2014: International Journal of Low-Carbon Technologies.

doi:10.1093/ijlct/ctu004

Contexts	Outcomes
Under transient climatic conditions, solar water	A model manifold simulated the
heaters with heat pipes are more effective in terms of	manifold of a heat-pipe evacuated tube
capturing incident solar radiation (in comparison with	solar water heater was presented. 2D-
other types of water heaters). Two configurations	PIV revealed significant differences in
were studied: thermosiphon fluid flow and reflective	flow patterns between the two
concentrators.	manifold configurations which were
	confirmed by comparing Nusselt
	number. The five pin-fin system had
	Nusselt 2.1 times greater than that
	calculated at the same location in the
	10 pin-fin configuration. The results
	showed that the incorporation of
	concentrators would have a small effect
	on the overall system efficiency but
	would reduce the frictional losses
	internally. The authors noted that
	further work is needed for the
	improvement of similar heat
	exchangers.

2. Sultana T., Morrison G.L. and Rosengarten G., Thermal performance of a roof integrated solar microconcentrating collector, 2011: ISES 5, 3494-3505, 30th ISES Congress, SWC 2011; Kassel; Germany; 28 Aug.- 2 Sept.

Contexts	Outcomes
Concentrating solar thermal systems for rooftop	A computational model for the
applications.	prototype collector was developed by
	using ANSYS-CFX. The numerical results
Thermal performance of a new low-cost solar thermal	were compared with experimental
micro-concentrating collector (MCT) which used linear	measurements.
Fresnel reflectors and it was designed to operate at	
temperatures up to 220°C.	The efficiency of the collector was

The modules of that collector were approximately 3 meters long by 1 meter wide and 0.3 meters high.	established on the basis of ray tracing and heat loss analysis.
Objective of the study: to optimize the design to maximize the overall thermal efficiency.	
Computational investigation of radiation and convection heat transfer in order to understand the heat loss mechanisms.	

6.10. General studies

1. Moshfegh B., Sandberg M., Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part I – numerical study, WREC 1996, 248-253.

http://dx.doi.org/10.1016/0960-1481(96)88856-2

Contexts	Outcomes
Numerical study about fluid flow and heat transfer of	Numerical results were derived for a
buoyancy-driven convection between two vertical	channel (6.5 m height; different widths
parallel walls, heated from one side. Both convection	of the channel). The results showed the
and radiation heat exchanges were taken into account	importance of radiation heat
as the heat transfer mechanisms by which the thermal	exchangers to the heat transfer
energy is transferred into the air. A steady-state 2D	mechanisms between channel walls.
model was adopted (finite element code).	

2. G. Gan, S. B. Riffat, CFD modelling of air flow and thermal performance of an atrium integrated with photovoltaics, 2004: Building and Environment 39, 735-748.

http://dx.doi.org/10.1016/j.buildenv.2004.01.027

Contexts	Outcomes
The thermal performance of an atrium integrated with	The work showed that CFD is useful for
PVs was evaluated. CFD was adopted for the	optimising building ventilation systems
prediction of air flow and temperature distribution in	to provide a comfortable indoor
the atrium. CFD was then used to investigate the	environment and effective cooling of BI
effect of ventilation strategies on PV performance.	PVs. For effective cooling of roof PVs,
CFD package FLUENT was utilized.	cool outdoor air should be supplied
	through an opening close to the roof or
	an air channel under the PVs. Increasing
	the ventilation rate can also reduce
	temperature and thus, improve PV

performance, in particular if cool outdoor air is supplied via an opening close to the PVs.

3. G. Gan, Effect of air gap on the performance of building-integrated photovoltaics, 2009: Energy 34, 913–921.

http://dx.doi.org/10.1016/j.energy.2009.04.003

Contexts	Outcomes
Ventilation of PVs installed over or beside a building	It was found that PV mean PV
envelope can reduce module temperature and	temperature and maximum PV
increase electrical conversion efficiency. A CFD	temperature associated with hot spots
method was adopted to assess the effect of the size of	decreased with the increase in pitch
air gap between PV modules and building envelope on	angle and air gap. Mean PV
PV performance in terms of cell temperature for a	temperature also decreased with
range of roof pitches and panel lengths and to	increasing panel length for air gaps
determine the minimum air gap that is required to	greater than or equal to 0.08 m
minimise PV overheating. CFD software FLUENT was	whereas maximum PV temperature
adopted.	generally increased with panel length.
	In order to reduce possible overheating
	of PVs and hot spots near the top of the
	modules requires minimum air gap
	0.12–0.15 m for multiple module
	installation and 0.14–0.16 m for single
	module installation depending on roof
	pitches.

7. Studies about Thermal Simulation (emphasis: building/system)

7.1. BI, Solar Thermal

1. Maurer C., Baumann T., Hermann M., Di Lauro P., Pavan S., Michel L. and Kuhn T.E., Heating and cooling in high-rise buildings using facade-integrated transparent solar thermal collector systems, 2013: Journal of Building Performance Simulation 6(6), 449-457.

10.1080/19401493.2013.766263

Contexts	Outcomes
Transparent solar thermal collectors (TSTCs) were	New transient systems simulation
studied	(TRNSYS) types were developed
Modelling challenges that arise when considering	A simplified model was presented for
building façades and especially integrated TSTC	comparison purposes.
systems were examined.	

The overall performance of a building with façade-integrated TSTC was examined by considering a complete simulation model coupling the TSTC, building and heating, ventilation and air conditioning operation of the building.
Possibilities for primary energy savings were investigated by using building mass as an additional thermal storage.

2. M. M. Hassan, Y. Beliveau, Design, construction and performance prediction of integrated solar roof collectors using finite element analysis, 2007: Construction and Building Materials 21, 1069–1078.

http://dx.doi.org/10.1016/j.conbuildmat.2006.01.001

Contexts	Outcomes
An integrated roof solar collector was designed to	Results showed that the integrated roof
achieve ease of construction, energy efficiency,	collector provides acceptable thermal
functional integration, composite behaviour,	performance by supplying
sustainability, reliability, flexibility, and cost	approximately 85% of the building
effectiveness.	space heating and hot water
	requirements.
Three-dimensional (3D) finite element models were then developed to evaluate the thermal performance of the integrated roof solar collector.	
Coupled conduction, forced convection, and long wave thermal radiation modes of heat transfer were considered in the developed models. A specific location (Blacksburg, VA) was modelled.	

7.2. BI, Trombe Wall

1. Nowzari R. and Atikol U., Transient Performance Analysis of a Model Building Integrated with a Trombe-Wall, 2009: Conference HTE'09, 20-22 August 2009, Moscow, Russia.

Contexts	Outcomes
Investigation of temperature behaviour of a	The simulation results obtained by
hypothetical two-story building with a total floor area	TRNSYS for the hypothetical building
of 120 m ² by modelling and simulation with TRNSYS	integrated with a thermal storage wall:
program.	for January because it is one of the
	coldest months of the year.
A vented Trombe wall was adopted for the south	

façade of the ground floor and a direct gain window of area 6.5 m ² was placed on the south façade of the First floor.	
It was assumed that the model building was located in Larnaca, Cyprus.	

7.3. BI, PVT

1. Chen Y., Athienitis A. K. and Galal K., Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept, 2010: Solar Energy 84(11), 1892–1907.

http://dx.doi.org/10.1016/j.solener.2010.06.013

Contexts	Outcomes
A quasi-two dimensional, control volume, steady state model for the simulation of the thermal performance of a BIPVT system, as well as a linear equation for predicting the temperature of the PVs and air at the outlet was developed based on measured data (the model and the equation could be applied to other BIPVT systems with similar configurations and they are useful in preliminary design and for control of air flow in the BIPVT system).	A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed.
During the initial design stage, the house was first analyzed without renewable energy use: based on HOT 2000 simulations, the annual gross space heating load (without solar gains) was evaluated Climatic conditions: Eastman, Quebec, Canada (a cold climate area).	

7.4. BI, PV

1. Mei L., Infield D., Eicker U. and Fux V., Thermal modelling of a building with an integrated ventilated PV façade, 2003: Energy and Buildings 35(6), 605–617.

http://dx.doi.org/10.1016/S0378-7788(02)00168-8

Contexts	Outcomes
Dynamic, finite element thermal model for ventilated	A thermal building model is developed
PV façades combined with TRNSYS $ ightarrow$ complete	that include submodels of the

	•
thermal building model incorporating a ventilated PV	ventilated PV facade and the additional
	- levely - llevely
raçade and solar air collectors.	solar air collectors.
Building with an integrated ventilated PV facade/solar	The modelled and the measured air
air collector system	tomporatures were found to be in good
all collector system.	temperatures were round to be in good
	agreement. The heating and cooling
Building model validated with experimental data from	loads for the building with and without
a 6.5-m high PV façade on the Mataro Library near	that ventilated façade were calculated
Barcelona.	and the impact of climatic variations on
	the performance such buildings was
	also investigated. The results showed
	that the cooling loads were marginally
	higher with the PV façade for all
	locations considered, while the impact
	of the façade on the heating load
	depended on the location.

7.5. BI, Several systems

1. Kuhn T.E., Herkel S., Frontini F., Strachan P. and Kokogiannakis G., Solar control: A general method for modelling of solar gains through complex facades in building simulation programs, 2011: Energy and Buildings 43(1), 19 – 27.

http://dx.doi.org/10.1016/j.enbuild.2010.07.015

Contexts	Outcomes
A new method ("black box" model) for integrating	Advantage of the new method: only
complex façades in building simulation programs was	uses measurable quantities of the
developed.	transparent or translucent part of the
	façade as a whole.
The method was designed to be used for complex	
façade components with nontrivial angular	General idea of the model: to describe
dependence.	every complex façade with a two-layer
	model $ ightarrow$ each of the two virtual layers
Complex façades: façades with prismatic layers, light	has an effective solar absorptance with
re-directing surfaces, etc. $ ightarrow$ façade properties with	the desired angular dependence,
complex angular dependence, façades with non-	between the two layers, there is a
airtight layers, non-flat surfaces, etc.	temperature-dependent thermal
	resistance.
The method was implemented in ESP-r and the	
implementation was validated; the authors noted that	
the method could be implemented also in other	
detailed simulation programs such as DOE-2,	
EnergyPlus, TRNSYS or TAS thermal analysis software.	

7.6. BA, Space heating/water heating

1. Ji J., Luo C., Chow T.-T., Sun W. and He W., Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation, 2011a: Energy 36 (1), 566–574.

http://dx.doi.org/10.1016/j.energy.2010.10.004

Contexts	Outcomes
Building-integrated (added on the façade) dual-	A coupled numerical model has been
function solar collector in water heating mode with	developed for this building-integrated
natural circulation was studied (modified collector).	dual-function solar collector system.
Dual function: passive space heating during cold winter; water heating over warm seasons (two independent modes).	Through experimental validation, the numerical model was demonstrated, which is able to give accurate predictions.
performance and solar transmission though building	Over typical summer days with the
facade / experimental validation (experimental set-up:	modified collector the daily cooling load
collector prototype mounted on the exterior wall of a	of the room was reduced by 2%. The
testing hot-box).	modified design did not lead to summer
	overheating (common in most of the
Finite difference model.	traditional passive space heating
	systems). In addition, over typical
Heat flow through the front glazing: considered as	summer days, water temperature in
	most of the bot water applications)
Water heating model for the collector; building facade	During typical autumn days, the
model (coupling: collector model with building wall);	modified collector in water heating
space thermal load computations.	mode with natural circulation resulted
	in an increase of space cooling load but
Region/climatic conditions: Hefei, China.	a reduction of space heating load.
	Furthermore, during typical autumn
Based on practical air-conditioned room design	days, the water temperature can reach 48° C with a thormal officiency of 48.4%
water beating performance and to compare the solar	and a corresponding water heat gain at
transmission through building facade in different	$6.57 \text{ M}/\text{m}^2$
seasons with or without its presence.	
'	

2. Ji J., Luo C-L, Chow T-T, Sun W. and He W., Modelling and validation of a building-integrated dualfunction solar collector, 2011b: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225-259.

DOI: 10.1177/2041296710394243

Contexts	Outcomes
Two dynamic numerical models based on the finite-	For the thermosiphon water heating
difference method.	mode, it was proved by comparison of
Region/climatic conditions: Hefei, China.	the experimental and simulated results that during the experimental periods, the prodiction of the daily thermal
A novel BI solar thermal system (BI dual-function solar collector) was proposed. The system had two independent operating modes: passive space heating mode and water heating mode (it used criteria to select the operating mode: during cold days it works in passive space heating and during warm season it works in the water heating mode). A testing system was established and it performed in thermosiphon water heating mode for heating of water. Two dynamic numerical models were presented for the two operating modes of the testing system. The experimental data were used to validate the two models.	efficiencies only had a maximal relative absolute deviation of 2.6% and the RMSD of the simulated result of the indoor temperature was around 0.4°C. For the case of the space heating mode, the numerical model can also give accurate predictions but with higher deviation compared to the model for the system in the thermosiphon water heating mode.

7.7. General studies

1. Charvát P., Klimeš L. and Ostrý M., Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems, 2014: Energy and Buildings 68, 488–497.

http://dx.doi.org/10.1016/j.enbuild.2013.10.011

Contexts	Outcomes
Phase Change Materials (PCMs) for thermal energy	The results of the simulations
storage in air-based solar thermal systems.	demonstrated a good agreement with
	the experimental results. The model
Climatic conditions: Czech Republic.	was adopted for a parametric study
	analysing the influence of certain
Model and experimental validation (paraffin-based	parameters. The performed
PCM).	investigations revealed a potential of
	the use of latent heat thermal storage
Numerical model of the heat storage unit was	in air-based thermal systems with a
implemented as a 1D transient heat transfer problem;	narrow temperature operation range.
TRNSYS 17 simulation tool was used for the numerical	
investigations; coupling between TRNSYS and MATLAB	
was adopted for the development of the numerical	
model of the heat storage unit; the numerical model	
developed in MATLAB was consequently recompiled	
with the use of C++ programming language to the	
form of the build-in TRNSYS module.	

8. Studies of Energetic/Thermal Simulation (emphasis: building)

No available studies

9. Studies of Energetic/Thermal Simulation (emphasis: system)

9.1. BI, Solar Thermal

1. G. Notton, F. Motte, Chr. Cristofari, J.-L. Canaletti, New patented solar thermal concept for high building integration: Test and modeling, 2013: Energy Procedia 42, 43-52.

http://dx.doi.org/10.1016/j.egypro.2013.11.004

Contexts	Outcomes
A new concept of flat plate solar collector is	The developed model has a good
presented: it has a remarkable shape and is integrated	accuracy with the measured data: the
into a rainwater gutter. Several solar modules are	relative root mean square errors are
connected serially or in parallel.	around 5% for the water temperatures
	and from 4.6 % to 10% for the internal
A numerical model is developed in Matlab	ones.
environment using a finite difference model and an	
electrical analogy. The thermal model is validated	The main advantage of this model is to
from experimental data under various meteorological	be able to modify easily the
situations.	characteristics and the form of the used
	materials.
The adequacy of this model with the experimental	
data is shown for the water temperatures and for	
various temperatures inside the solar collector.	

9.2. BI, Skin Façades

1. D. Faggembauu, M. Costa, M. Soria, A. Oliva, Numerical analysis of the thermal behaviour of ventilated glazed facades in Mediterranean climates.

Part I: development and validation of a numerical model, 2003: Solar Energy 75, 217–228.

http://dx.doi.org/10.1016/j.solener.2003.07.013

Contexts	Outcomes
Despite the architectural interest of the glazed	A specific numerical code (for time-
façades, in Mediterranean climate these systems are	accurate simulations of the thermal and
responsible for the overheating of the building. In	fluid-dynamic behaviour of ventilated
these zones, double-skin envelopes made up of two	and conventional façades) was
layers of glass separated by an air channel in order to	developed. It was based on 1D-
collect or evacuate the solar energy absorbed by the	discretizations and allowed the
façade are a design option that could resolve this	evaluation of the performance of the
issue.	façades over the course of a year. The

numerical results of each submodel were compared with the results of analytical models; both with reference situations and with experimental measures obtained in real-site test façade facilities (in different climatic conditions).
The numerical code is a useful tool for the evaluation of the performance of different building façades. Different materials, orientations, geometries and climates can be tested in order to
optimise designs/recommendations.

9.3. BI, PVT

1. Agrawal B. and Tiwari G. N., Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions, 2010: Applied Energy 87(2), 417 – 426.

http://dx.doi.org/10.1016/j.apenergy.2009.06.011

Contexts	Outcomes
One-dimensional transient model was developed by	Performance analysis of a BIPVT system
using basic heat transfer equations.	has been evaluated for four different
	parallel and series combinations under
An analysis was carried in order to select an	the cold climatic conditions of India.
appropriate BIPVT system suitable for the cold climatic	
conditions of India.	It is concluded that for a constant mass
	flow rate of air, the series combination
Climatic conditions: data for Srinagar city.	is more suitable for the buildings fitted
	with BIPVT systems as rooftop.
Software "Matlab 7" to evaluate the performance and	
compute the useful exergy for all combinations of the	
BIPVT systems.	

2. Yang T., Athienitis A.K., A study of design options for a building integrated photovoltaic/thermal (BIPV/T) system with glazed air collector and multiple inlets,

2012: Energy Procedia 30, 177 – 186.

http://dx.doi.org/10.1016/j.egypro.2012.11.022

Contexts	Outcomes
Open loop air based BIPVT system having single inlet.	The simulation results showed that the
	application of two inlets on a BIPVT
Experiment was performed inside the lab under	collector increased thermal efficiency
indoor simulator at Concordia University, Canada.	by around 5% and increase electrical
	efficiency marginally. An added vertical
A control volume model was developed to validate	glazed solar air collector improved
the experimental results.	thermal efficiency significantly while the
	improvement was more significant with
Improved designs of the BIPV/T system with multiple	wire mesh packing in the collector.
inlets and other means of heat transfer enhancement	
are examined by means of the simulations.	

3. Corbin C.D., Zhai Z.J., Experimental and numerical investigation on thermal and electrical performance of a building integrated photovoltaic–thermal collector system, 2010: Energy and Buildings 42, 76–82.

Contexts	Outcomes
An experimentally validated CFD model of a new	The proposed BIPVT collector
BIPVT collector was investigated to examine the effect	demonstrated potential for providing
of active heat recovery on cell efficiency and to	increased electrical efficiency of up to
determine the effectiveness of that device as a solar	5.3% over a naturally ventilated BIPV
hot water heater. A parametric analysis indicated that	roof, reducing negative effects of
cell efficiency can be raised by 5.3% and water	integration into building façade. This
temperatures suitable for domestic hot water use are	collector provided hot water for
possible. Thermal and combined (thermal plus	domestic use or hydronic space heating
electrical) efficiencies were found to be 19% and	with no additional roof space
34.9%, respectively. A new correlation was developed	requirements. The total efficiency of the
for relating electrical efficiency to collector inlet water	collector was predicted to be 34.9%. A
temperature, ambient air temperature and insolation	new correlation was developed for
that allowed cell efficiency to be calculated directly.	relating PV cell efficiency to collector
In terms of the experimental set-up: the novel	water inlet temperature, ambient air
experimental collector was originally designed and	temperature and insolation. That
constructed for the 2007 U.S. Solar Decathlon by the	correlation allowed cell efficiency to be
University of Colorado Solar Decathlon Team while	predicted based on readily available and
the collector had 41 PV panels suspended above an	easily measured quantities. Standard
array of tube-fin absorbers.	methods for characterizing solar hot
	water collectors were also applied to
Two models were developed to evaluate the	determine the important collector
performance of the BIPV/T collector under different	properties from which thermal
operating conditions. A collector cooled by natural	efficiency can be calculated. The
convection was the base case for cell temperature	numerical model was well validated and
comparison. That model represented a standard BIPV	demonstrated good agreement with the
where PVs are mounted close to the roof surface. The	experimental data from a full-scale test
second, a collector with a liquid-cooled tube-fin	collector.

http://dx.doi.org/10.1016/j.enbuild.2009.07.013

absorber into the cavity, simulated active heat	
recovery. The collector geometry simulated in both	
models matched with the physical characteristics of	
components in the physical test array.	
A CFD package was adopted for the simulations.	

4. H.M. Yin, D.J. Yang, G. Kelly, J. Garant, Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings, 2013: Solar Energy 87, 184–195.

http://dx.doi.org/10.1016/j.solener.2012.10.022

Contexts	Outcomes
A building integrated multifunctional roofing system	The performance analysis indicates that
has been designed to harvest solar energy through	the proposed solar roofing system
photovoltaics (PVs) and heat utilization while	provides significant advantages over the
minimizing PV efficiency loss and eliminating the	traditional asphalt shingle roof and PV
material and labor redundancies of conventional PV	systems without cooling.
systems.	

5. T.T. Chow, A.L.S. Chan, K.F. Fong, Z. Lin, W. He, J. Ji, Annual performance of building-integrated photovoltaic/water-heating system for warm climate application, 2009: Applied Energy 86(5), 689-696.

http://dx.doi.org/10.1016/j.apenergy.2008.09.014

Contexts	Outcomes
Through computer simulation with energy models	Through computer simulation with
developed for this integrative solar system in Hong	energy models developed for this
Kong, the results showed that the photovoltaic/water-	integrative solar system in Hong Kong,
heating (PVW) system is having much economical	the results showed that the
advantages over the conventional photovoltaic (PV)	photovoltaic/water-heating (PVW)
installation.	system is having much economical
	advantages over the conventional
The system thermal performance under natural water	photovoltaic (PV) installation.
circulation was found better than the pump-	
circulation mode.	The system thermal performance under
	natural water circulation was found
	better than the pump-circulation mode.

6. L. Liao, Y. Poissant, M. Collins, A. K. Athienitis, L. Candanedo and K.-W. Park, Numerical and experimental study of heat transfer in a BIPV-thermal system, 2007: Journal of Solar Energy Engineering 129(4), 423-430.

Contexts	Outcomes
A CFD study was conducted for a BIPVT. The heat	Cavity temperature profiles were
transfer in the BIPVT cavity was studied with a 2D CFD	calculated and compared to the
model. The realizable k-ε model was adopted to	experimental data for different
simulate turbulent flow and convective heat transfer	conditions. A good agreement was
in the cavity, including buoyancy effect and long-wave	observed. Correlations of convective
radiation between boundary surfaces was also	heat transfer coefficients were
modeled. A particle image velocimetry (PIV) system	generated for the cavity surfaces. Local
was employed to examine fluid flow in BIPVT cavity	heat transfer coefficients, such as those
and provide partial validation for the CFD model.	presented, are necessary for the
Average and local convective heat transfer	prediction of temperature distributions
coefficients were generated with the CFD model using	in BIPVs.
measured temperature profile as boundary condition.	

7. S. Li, P. Karava, S. Currie, W. E. Lin, E. Savory, Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 1: Model development and validation, 2014: Solar Energy, In press.

http://dx.doi.org/10.1016/j.solener.2013.12.040

Contexts	Outcomes
Energy models for two systems: Unglazed Transpired	Correlations for the average Nu related
solar Collector (UTC) only; UTC with PVs, were	to exterior and interior convective heat
developed. CFD simulations were performed. The	transfer and the effectiveness were
energy models were validated with measurements	obtained, for the first time, for the
(outdoor two-story test building at Purdue University,	configurations considered (UTCs with
USA). Good agreement between the model prediction	trapezoidal-shaped corrugation and
and the experimental data was observed.	small perforation suction; UTCs with
	PVs), through validated CFD simulations
	(high resolution grids; RNG k–ε
	turbulence closure model).
	The authors note that a detailed
	discussion of the energy performance of
	their system is presented in a second
	paper (Part 2) which is an extension of
	that work.

8. S. Li, P. Karava, Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2: Performance analysis, 2014: Solar Energy, In press.

http://dx.doi.org/10.1016/j.solener.2013.12.041

Contexts	Outcomes
Contexts This paper which is an extension of the previous one (part 1) outlined all the factors that affect the thermal performance of PVTs integrated with UTCs and examined the impact of several parameters (corrugation geometry, plate orientation, incident turbulence intensity).	Outcomes The findings of that study revealed that the 'vertical' installation of the plate greatly enhanced exterior and interior convective heat transfer due to the combined effects of the corrugation, wind speed, suction velocity and buoyancy, for the configuration of UTC only. Increasing the turbulence intensity increased the exterior Nu. Optimizing the geometry can greatly improve the energy performance of UTC systems. Improving the energy performance through optimizing the geometrical parameters for UTCs with PV panels was
	parameters for UTCs with PV panels was less effective.

9. Chow T. T., He W., Chan A. L. S., Fong K. F., Lin Z. and Ji J., Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system, 2008: Applied Thermal Engineering 28(11–12), 1356-1364.

http://dx.doi.org/10.1016/j.applthermaleng.2007.10.007

Contexts	Outcomes
A dynamic simulation model of a BI PV and water	The use of multi-nodal scheme is
heating system was developed.	considered most useful in apprehending
	the underlying physical processes.
The numerical model was developed based on the	
finite difference control volume approach while the	The integrated use of energy balance
integrated use of energy balance and fluid flow	and fluid flow analysis allows the
analysis allowed the prediction of system dynamic	prediction of the system behavior in a
behavior under external excitations such as changes in	comprehensive manner.
weather, water consumption and make-up conditions.	
The validity of the model was verified by comparing its	
predicted operating temperature changes and system	
daily efficiencies with the measured data acquired	
from an experimental rig at the City University of	
Hong Kong.	

9.4. BI, PV

1. A. Kane, V. Verma, Performance Enhancement of Building Integrated Photovoltaic Module using Thermoelectric Cooling, 2013: International Journal of Renewable Energy Research 3(2). http://www.ijrer.com/index.php/ijrer/article/view/588

Contexts	Outcomes
In order to cool BIPV, a thermoelectric system was	The results of the simulations revealed
developed. Thermoelectric module was attached at	that the proposed cooling method
the back of PV module (cooling mode). Initially	improved PV efficiency but at the cost
mathematical modeling of individual systems was	of minimal power loss. The detailed
performed. Then the dynamic model of	analysis of the model showed that
BIPV/Thermoelectric system with consideration of	performance and life enhancement of
temperature of PV panel temperature was developed.	BIPV could be achieved with 10°C
	cooling without loss of power.

2. Mei L., Infield D., Eicker U., Fux V., Parameter estimation for ventilated photovoltaic façades, 2002: Building Services Engineering Research and Technology 23(2), 81-96.

doi: 10.1191/0143624402bt033oa

Contexts	Outcomes
The estimation of thermal parameters which describe	A direct numerical approach was
the performance of ventilated PV façades integrated	developed in order to identify the
into buildings was examined.	parameters that describe heat transfer
	processes. The method allowed the
	heat transfer coefficients to be
	obtained (directly) from data measured
	on an operational ventilated PV façade.
	The results were compared with values
	which were taken from conventional
	practice.

9.5. BI, PCM for passive solar walls

1. K. Darkwa, P.W. O'Callaghan, Simulation of phase change drywalls in a passive solar building, 2006: Applied Thermal Engineering 26, 853–858.

http://dx.doi.org/10.1016/j.applthermaleng.2005.10.007

Contexts	Outcomes
Integration of phase change materials (PCMs) into	Laminated PCM sample with a narrow
building fabrics: composite PCM drywall samples (i.e.	phase change zone was capable of
randomly-mixed and laminated PCM drywalls) were	increasing minimum room temperature
studied in a model passive solar building.	by about 17% more than the randomly-
	mixed type. Even there was some
Thermal simulations for a room were performed	display of non-isothermal phase change
numerically by finite difference method based on the	process the laminated system was
fixed mesh method.	proved to be thermally more effective

in terms of evolution and utilization of
latent heat. Further heat transfer
enhancement process was required for
the development of the laminated
system.

9.6. BA, PVT

1. Tonui J.K., Tripanagnostopoulos Y., Performance improvement of PV/T solar collectors with natural air flow operation, 2008: Solar Energy 82, 1–12.

http://dx.doi.org/10.1016/j.solener.2007.06.004

Contexts	Outcomes
An analytical model was developed in Fortran90 to	Model estimated the outlet air
evaluate induced airflow rate and PVT system	temperature within $\pm 2^{\circ}$ C for all
temperature for natural airflow.	configuration.
Three configurations were studied: Reference; with thin metal sheet in the middle of the air channel (TMS); with fins in the middle of the air channel (FIN). These low-cost modifications in the air channel were made in order to improve heat extraction.	The air mass flow rate was also calculated by this model. The air mass flow rates which were evaluated by the model for the three configurations were in agreement with the results reported for ventilated PV façades by other researchers. The model results revealed that the modified systems had better thermal efficiency for every parameter considered with the FIN system giving better performance than the TMS system but both contributed positively towards enhancing heat extraction from PV module for better electrical and thermal energy production.

2. Kalogirou S.A, Tripanagnostopoulos Y., Industrial application of PV/T solar energy systems, 2007: Applied Thermal Engineering 27, 1259–1270.

http://dx.doi.org/10.1016/j.applthermaleng.2006.11.003

Contexts	Outcomes
TRNSYS simulations were performed for hybrid PVT	The results revealed that the electrical
solar systems for domestic hot water applications	production of the system with
both passive (thermosiphonic) and active.	polycrystalline solar cells was more than
	the amorphous one but the solar
Prototype model was manufactured at University of	thermal fraction was slightly lower. A

Patras (Greece), using polycrystalline silicon (pc-Si)	non-hybrid PV system gave about
and amorphous silicon (a-Si) combined with water	25% more electrical energy but the
heat extraction unit.	present system covered also, depending
	on the location, a large percentage of
Simulations were performed using Typical	the thermal energy of the industry
Meteorological Year (TMY) data from Nicosia (35 ⁰),	considered.
Athens (38°) and Madison (43°).	
TRNSYS model calculated the energy and cost of	
hybrid PVT system with thermosiphon and forced	
water flow.	

3. Kalogirou S.A, Tripanagnostopoulos Y., Hybrid PV/T solar systems for domestic hot water and electricity production, 2006: Energy Conversion and Management 47, 3368–3382.

http://dx.doi.org/10.1016/j.enconman.2006.01.012

Contexts	Outcomes
Contexts TRNSYS simulation were performed for PVT systems, for three locations at different latitudes: Nicosia (35°), Athens (38°) and Madison (43°). In that study, the authors considered a domestic thermosiphonic system and a larger active system suitable for a block of flats or for small office buildings.	Outcomes The results revealed that a considerable amount of thermal and electrical energy was produced by the PVTs and the economic viability of the systems was improved. The electrical production of the system with polycrystalline solar cells was more than that employing the amorphous ones, but the solar thermal contribution was slightly lower. A non- hybrid PV system produced about 38% more electrical energy, but the present system covered also a large percentage of the hot water needs of the buildings considered. The TRNSYS results gave an account of the energy and cost benefits of the studied PVTs with thermosinhon
	and forced water flow. As a general conclusion, the overall energy production of the units was increased and the hybrid units had better chances of success. This was also strengthened by the improvement of the economic viability of these systems, especially for applications where low temperature water, like hot water production for domestic use, was also required.

4. Garg H.P., Adhikari R.S., Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation, 1997: Renewable Energy 11(3), 363-385.

http://dx.doi.org/10.1016/S0960-1481(97)00007-4

Contexts	Outcomes
Performance analysis of a conventional PVT air	The use of single- and double-glass
heating collector was performed. A simulation model	covers in a PVT air heating system
was developed while various performance parameters	depends on the range of the
were calculated for single-glass and double-glass	temperatures for which the system is
configurations. The results were presented to show	designed. The system efficiency
the effect of various design and operational	increased with increase in collector
parameters on the performance of a system. The	length, mass flow rate, cell density and
authors noted that these results are useful for	decreased with increase in duct depth
designing such systems more scientifically; however,	for both configurations.
final selection of design and operational variables	
must be based on system cost-effectiveness.	

9.7. General studies

1. G. Notton, C. Cristofari, M. Mattei, P. Poggi, Modelling of a double-glass photovoltaic module using finite differences, 2005: Applied Thermal Engineering 25, 2854–2877.

http://dx.doi.org/10.1016/j.applthermaleng.2005.02.008

Contexts	Outcomes
A simulation model (finite differences) for a double-	The authors considered as convective
glass multi-crystalline PV module was developed and	coefficient:
validated by using experimental data. The simulation	 Only the forced convective one
model was based on various thermal hypotheses,	- The highest value between free and
particularly concerning the convective transfer	forced one
coefficients and various hypotheses found in the	- The sum of two coefficients: free and
literature were tested (the best one was accepted).	forced
	Using the developed modelling
	procedure, the cell temperature was
	estimated with a root mean square
	error of 1.3°C.

2. Kalogirou S.A., Use of TRNSYS for modeling and simulation of a hybrid pv–thermal solar system for Cyprus, 2001: Renewable Energy 23, 247–260.

http://dx.doi.org/10.1016/S0960-1481(00)00176-2

Contexts	Outcomes
Modelling and simulation of a PVT system was	The results revealed that the optimum
performed. The system consisted of a normal PV	water flow rate of the system was 25
panel at the back of which a heat exchanger with fins	l/h. The hybrid system increased mean
was embedded. The advantage of that system was	annual efficiency of the PV system from
that the PV operated at a lower temperature and	2.8% to 7.7% and in addition covered
thus, more efficiently and also hot water was	49% of the hot water needs of a house,
produced at the same time as electricity. The PV	and thus, increased the mean annual
system consisted of a series of PV panels, a battery	efficiency of the system to 31.7%.
bank and an inverter while the thermal system	
consisted of a hot water storage cylinder, a pump and	
a differential thermostat. The system was modelled by	
TRNSYS, for typical meteorological year (TMY)	
conditions for Nicosia, Cyprus. The main component	
of the TRNSYS deck file constructed was Type 49,	
accompanied by other additional components	
required for the model.	

3. Bergene T., Løvvik O.M., Model calculations on a flat plate solar heat collector with integrated solar cells, 1995: Solar Energy 55(6), 453-462.

http://dx.doi.org/10.1016/0038-092X(95)00072-Y

Contexts	Outcomes
A detailed physical model of a PVT system was	In that study they showed that a PVT
developed and algorithms for making quantitative	system was interesting with respect to
predictions regarding the performance of the system	system efficiency while algorithms that
were presented. The model was based on an analysis	can be used in computer simulations
of energy transfers due to conduction, convection,	were presented. The model predicted
radiation and predicted the amount of heat that can	the performance of the system fairly
be drawn from the system and the (temperature-	well with system efficiencies, thermal
dependent) power output. Emphasis was given on the	plus electrical, about 60-80%. However,
dependence of the fin width to tube diameter ratio.	the authors mentioned that direct
	comparisons with relevant experiments
	were difficult as the system parameters
	relevant to the proposed model were
	not explicitly stated in the description of
	the experiments. As possible
	applications they proposed a domestic
	system for combined production of
	electricity and low temperature heat
	(for example as a pre-heater in a hot
	water system) and a large-scale system
	that it could be interesting regarding
	production of hydrogen and fresh
	water.
4. A. S. Yadav, J.L. Bhagoria, A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate, 2014: International Journal of Heat and Mass Transfer 70, 1016–1039.

Contexts	Outcomes
A numerical investigation to analyze the 2D incompressible Navier–Stokes flows through the artificially roughened solar air heater for relevant Reynolds number (from 3800 to 18,000) was conducted. Finite-volume-based numerical method was adopted. The commercial finite- volume based CFD code ANSYS FLUENT was utilized to simulate turbulent airflow through artificially roughened solar air heater. RNG k–e turbulence model was used to solve transport equations for turbulent flow energy and dissipation rate.	For a given constant value of heat flux (1000 W/m ²), the performance of the artificially roughened solar air heater was strong function of Reynolds number, relative roughness pitch and relative roughness height. The optimum configuration of the roughness element for artificially roughened solar air heater was evaluated.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.074

5. J. Xamán, G. Álvarez, L. Lira, C. Estrada, Numerical study of heat transfer by laminar and turbulent natural convection in tall cavities of façade elements, 2005: Energy and Buildings 37, 787–794.

http://dx.doi.org/10.1016/j.enbuild.2004.11.001

Contexts	Outcomes
Laminar and turbulent natural convection flow in a 2D	This study will help to have more
tall rectangular cavity heated from the vertical side	accurate heat transfer parameters for
was studied numerically (finite volume method).	several applications: façade elements,
	insulating units, double-skin façades,
Fluid flow and heat transfer by natural convection in a	etc.
tall cavity using laminar and turbulent k–ε models was	
examined.	

6. S. Farah, W. Saman, and M. Belusko, Chapter 79 Integrating Solar Heating and PV Cooling into the Building Envelope, 2013: A. Håkansson et al. (Eds.): Sustainability in Energy and Buildings, SIST 22, pp. 887–901, Springer-Verlag Berlin Heidelberg.

DOI: 10.1007/978-3-642-36645-1_79

Contexts	Outcomes
A new 1D, steady-state BI solar collector model was	For the same total collector area and for
developed, incorporating PVT and thermal (PVTT)	the same PVT section characteristics,
collectors connected in series. In summer, the PVT	PVTT was found to be better than PVT
collector was air-cooled and the collected heat was	by reducing the summer operating
discarded to the surroundings while thermal collector	temperature. That temperature
heated the water for domestic use. In winter, both	reduction avoids collector thermal
PVT and thermal collectors were water-cooled	stresses and provides modest electrical
producing domestic hot water.	power output improvement; however,
	this small improvement is associated
The presented BI collector incorporated an unglazed	with a more complex collector.
PVT collector and a glazed thermal collector,	
connected in series to form one PVTT collector. The	
PVTT collector was cooled by water or simultaneously	
by two fluids (air and water). The cooling fluid tube or	
channel was bounded by stiffened corrugated roof	
metal sheet and absorber. The roof metal sheets were	
available in different profiles and they were made	
from aluminum or coated steel. These profiles can be	
easily modified to allow the installation of the	
absorber over a trough space and the installation of	
the PV laminate and the glazing of the PVT and	
thermal sections respectively.	

10. Studies of Energetic/Thermal Simulation (emphasis: building/system)

10.1. BI, Solar Collectors

1. L. Gao, H. Bai, X. Fang, T. Wang, Experimental study of a building-integrated solar air heating system in cold climate of China, 2013: Energy and Buildings 65, 359–367.

http://dx.doi.org/10.1016/j.enbuild.2013.06.014

Contexts	Outcomes
A series of experiments were carried out under real	Design heating load of a reference
transient outdoor conditions to investigate thermal	building in Harbin can be reduced by
performance, color effect and energy savings of a	6.4% due to reduced wall loss with the
building-integrated solar air heating system based on	application of UTC.
unglazed transpired collectors (UTCs).	
	With better coordination with
The average efficiency of black UTC was 77.64% and	architectural design at early stage in a
68.92% under high and low air flow rate respectively,	project, this building-integrated solar air
which are higher than most glazed flat-plate	heating system can be both esthetically
collectors. Collector's surface color had an effect on	and technically viable in cold climate of
its thermal performance.	China.

10.2. BI, Skin Façade

1. A. Pappas, Z. Zhai, Numerical investigation on thermal performance and correlations of double skin facade with buoyancy-driven airflow, 2008: Energy and Buildings 40, 466–475.

http://dx.doi.org/10.1016/j.enbuild.2007.04.002

Contexts	Outcomes
The primary parameters for a double skin façade (DSF)	The energy performance and potential
design were examined: an integrated and iterative	influential factors of such DSF were
modeling process for analyzing the thermal	investigated. The modeling was used to
performance of DSF cavities with buoyancy-driven	develop correlations for cavity airflow
airflow by using a building energy simulation program	rate, air temperature stratification, and
(BESP) along with a CFD package, were adopted. A	interior convection coefficient that can
typical DSF cavity model was established and	provide a more accurate energy analysis
simulated. The model was validated using measured	of a DSF with buoyancy-driven airflow
data from Dirk Saelens (Vliet Test Cell in Leuven,	within an annual building energy
Belgium).	simulation program.

2. J. W. Moon, J.-H. Lee, Y. Yoon, S. Kim, Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network, 2014: Energy and Buildings 69, 175–183.

http://dx.doi.org/10.1016/j.enbuild.2013.10.016

Contexts	Outcomes
Development of an artificial neural network (ANN)-	The prediction accuracy of the ANN
based temperature control method to keep energy	model for indoor temperature was
efficient indoor thermal environment in buildings with	proved. That accuracy supported the
double skin envelopes.	applicability of that ANN model. The
	developed ANN model has the potential
	to be successfully applied to
	temperature control method for
	buildings with double-skin envelope
	systems over summer.

10.3. BI, PVT

1. Vats K., Tiwari G.N., Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system, 2012: Applied Energy 96, 409–416.

http://dx.doi.org/10.1016/j.apenergy.2012.02.079

Contexts	Outcomes
Building integrated semitransparent photovoltaic	Cell efficiency decreased with increase
thermal system was considered to the roof of a room	in cell temperature. The efficiency was
for analytical and numerical studies.	found to be 16.0% for HIT (PV cell on
	top of a crystalline silicon (c-Si) cell) and
One dimensional heat conduction equation in quasi	6.0% for a-Si (thin amorphous silicon).
steady state was considered.	
	HIT produced maximum annual
No temperature stratification in the air of room and	electrical energy (810 kW h) \rightarrow suitable
semitransparent PV module was also assumed.	for generating electrical power.
The room was considered as thermally insulated.	Si produced maximum annual thermal
The metagral gives data was for Dune (India)	energy (464 kW n) \rightarrow suitable for space
The meteorological data was for Pune (india)	neating applications.
Matlah 7.1 software was used	An annual overall thermal energy (2/197
	kW h) and exergy (834 kW h) was
Six different type PV module was considered to	maximum for the HIT PV.
perform comparison work on the basis of energy and	
exergy analysis.	

2. A. K. Athienitis, J. Bambara, B. O'Neill, J. Faille, A prototype photovoltaic/thermal system integrated with transpired collector, 2011: Solar Energy 85, 139–153.

http://dx.doi.org/10.1016/j.solener.2010.10.008

Contexts	Outcomes
Combination of BIPV/T and UTC systems for building	The value of the generated energy –
façades is considered in this paper – specifically, the	assuming that electricity is at least four
design of a prototype façade-integrated	times more valuable than heat – is
photovoltaic/thermal system with transpired collector (BIPV/T).	between 7% and 17% higher.
	Also, the electricity is always useful
A full scale prototype is constructed with 70% of UTC	while the heat is usually utilized only in
area covered with PV modules specially designed to	the heating season.
enhance heat recovery and compared to a UTC of the	
same area under outdoor sunny conditions with low wind.	The ratio of photovoltaic area coverage of the UTC may be selected based on
	the fresh air heating needs of the
The orientation of the corrugations in the UTC is	building, the value of the electricity
horizontal and the black-framed modules are attached	generated and the available building
so as to facilitate flow into the UTC plenum.	surfaces.
The BIPV/T concept is applied to a full scale office	
building demonstration project in Montreal, Canada	

10.4. BI, PV

1. Thevenard, D., Review and recommendations for improving the modelling of building integrated Photovoltaic systems, 2005: IBPSA Conference, Montreal Canada 15-18 Aug.

Contexts	Outcomes
The models for photovoltaic (PV) systems currently in ESP-r prove very useful in estimating the electrical and thermal impact of BIPVs (they represent well the impact of PVs on the building thermal energy balance) but they may lack in accuracy in the prediction of the system energy production \rightarrow To achieve both goals it is suggested to improve the PV models in ESP-r, taking into account all phenomena affecting the power output of PV modules: solar radiation intensity, cell temperature, angle of incidence, spectral distribution, uncertainty in manufacturer ratings, ageing, mismatch, soil and dirt, snow, partial shading, diodes, wiring \rightarrow This would provide a more realistic estimate of the probable PV output over its lifetime.	In the conclusion, the author noted that the current ESP-r PV model was adequate to predict the impact of PVs on building thermal energy balance, but may lack in accuracy to predict the energy production of the PV system. To achieve both goals at once it was suggested to improve or rewrite the PV models in ESP-r.
It is suggested to implement three models: a simple model based on constant efficiency, a one-diode equivalent model with explicit temperature dependency of the parameters, the Sandia model for cases when detailed modeling is required. PVs in ESP-r are modeled as an active material which can be located at any node inside a construction.	

10.5. BA, Several systems

1. Bakker M., Zondag H.A., Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump, 2005: Solar Energy 78, 331–339.

http://dx.doi.org/10.1016/j.solener.2004.09.019

Contexts	Outcomes
A 25-m ² PVT system and ground coupled heat pump	This system could cover 100% total heat
was simulated with TRNSYS.	demand of newly built Dutch one family
	dwelling.
The ground loop heat exchangers were modeled by	
using Eskilson's model, implemented in TRNSYS type	Based on ten-year average energy
81. This model assumed that ground thermal	balance of the reference system, the

properties were homogeneous, which was justified as long as the model was only used to describe long-term processes.	PVT was able to cover nearly all (96%) of its own electricity use (including pumps, electrical heater, and heat pump). The system was able to cover 100% of the heat use for space and tap water heating: the former was fully covered by the ground source heat pump by using PVT supplied heat, while the latter was partially covered by the PVTs, and partially by the heat pump.
--	--

2. F. A. Ghaith, R. Abusitta, Energy analyses of an integrated solar powered heating and cooling systems in UAE, 2014: Energy and Buildings 70 (2014) 117–126.

http://dx.doi.org/10.1016/j.enbuild.2013.11.024

Outcomes
The obtained results for the fully solar
powered system, showed that about
159 kWh and 126 ton/year savings were
achieved in the Annual Energy
Consumption (AEC) and CO ₂ emissions,
respectively.
The maximum solar penetration of 20% was found to be optimum as it reduced AEC by 176 kWh and cut off CO ₂ emissions by 140 ton/year with a payback period of 4 years.
The point of the p

11. Studies of Optical Simulation (emphasis: building)

No available studies

12. Studies of Optical Simulation (emphasis: system)

12.1. BI, Several systems

1. Glória Gomes M., Santos A. J., Moret Rodrigues A., Solar and visible optical properties of glazing systems with Venetian blinds: Numerical, experimental and blind control study, 2014: Building and Environment 71, 47–59.

http://dx.doi.org/10.1016/j.buildenv.2013.09.003

Contexts	Outcomes
Both direct and diffuse fluxes of transmitted, reflected	Model can be used for different sun
and absorbed solar and visible radiation within a	profile angles and venetian blind
multilayer glazing/shading system was presented. An	geometries, suitable for comparing
algorithm or determining solar and visible optical	different glazing/venetian blind
properties of venetian blinds was also described, so	solutions and devising blind control
that this type of system can be handled as a	strategies.
homogeneous layer of the fenestration system.	
	Design charts were developed to help
Net radiation method for solving the radiant energy	designers and users in enhancing the
exchange within a multilayer system.	thermal and daylighting indoor
	conditions by adjusting the slat
Numerical, analytical, experimental results:	orientation of venetian blinds.
comparison.	
	The knowledge of the solar and visible
Climatic conditions: Southern European regions	optical properties of different
(Lisbon, Portugal).	glazing/shading systems is crucial in
	identifying the most effective
	sustainable strategies to improve the
	fenestration system performance,
	regarding building energy consumption
	and indoor comfort issues.

2. Wiegman J. W. E. and van der Kolk E, Building integrated thin film luminescent solar concentrators: Detailed efficiency characterization and light transport modeling, 2013: Solar Energy Materials and Solar Cells 103, 41–47.

http://dx.doi.org/10.1016/j.solmat.2012.04.016

Contexts	Outcomes
An inorganic thin film luminescent solar concentrator	The model can be used to calculate the
(LSC) was characterized experimentally.	LSC light transport efficiency as a
	function of window size, which only
Application: as windows in buildings $ ightarrow$ building	needs the easily measurable linear
integrated (BI) LSCs.	attenuation as input.
	That modelling related BI-LSC efficiency to window colour.

3. Baldinelli G., Double skin façades for warm climate regions: Analysis of a solution with an integrated movable shading system, 2009: Building and Environment 44(6), 1107–1118.

http://dx.doi.org/10.1016/j.buildenv.2008.08.005

Contexts	Outcomes
Glass double skin façade equipped with integrated	The simulation of façade performances
movable shading devices.	with a CFD model for the winter
	configuration (shading closed) showed
Three different modelling levels: optics of materials,	the instauration of a buoyancy induced
fluid dynamics of the double skin façade and building	flow inside the gap, producing the
energy balance.	doubly beneficial effect of diminishing
	the heat dispersion through external
Aim: optimization of energy performance over winter	walls and preheating the air for
as well as over summer.	ventilation purposes.
3D CFD model made of two opaque walls with an inlet	
(bottom) and outlet (top) opening in the external wall;	
buoyancy driven flow regime.	
Climatic data: central Italy.	

4. A. Kerrouche, D.A. Hardy, D. Ross, B.S. Richards, Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV, 2014: Solar Energy Materials & Solar Cells 122, 99–106.

http://dx.doi.org/10.1016/j.solmat.2013.11.026

Contexts	Outcomes
Luminescent solar concentrators (LSC) are promising	Comparison of 3D ray-tracing modeling
for BIPV (providing variety of colors, etc.). Ray-trace	results with experimental data. 3D ray-
modeling: design, performance evaluation,	trace results showed good agreement
optimization of LSCs. The study included 70 samples –	with the experimental measurements
both square and circular LSCs, containing five different	ightarrow confidence in the use of modeling for
fluorescent organic dyes.	future larger LSCs for BIPVs.

5. Sellami, N., Mallick T.K., Design of nonimaging static solar concentrator for window integrated photovoltaic, 2012: 8th International Conference on Concentrating Photovoltaic Systems, CPV 2012; Toledo; Spain; 16 April 2012 through 18 April 2012.

DOI: 10.1063/1.4753845

Contexts	Outcomes
A solar concentrator for building integration	The concentrator was optically
(compact, static, able to collect maximum solar	optimised (for different incident angles
energy) was developed. The novel concentrator was	of the incoming light rays). Evaluating
designed for Window Integrated Concentrated PV	the best combination of the optical
(WICPV).	efficiency and the acceptance angle, 4x

concentrator built from dielectric
material, with total internal reflection
was optimised. It was found to have a
constant optical efficiency of 40% for an
acceptance angle equal to 120° (-60°,
+60°) and an optical concentration ratio
(OCR) equal to 1.6x. This enables
capture of the sun rays all day long
(both direct and diffuse light). Higher
OCR's were achieved for different
dimensions of the solar concentrator;
nevertheless, the acceptance angles
were relatively low. Experimental
results validated optical model results
with a variation of less than 5%

12.2. BA, Low-concentration evacuated-tube solar collector

1. G. Li, G. Pei, Y. Su, J. Ji, D. Wang and H. Zheng, Performance study of a static low concentration evacuated tube solar collector for medium-temperature applications, 2014: International Journal of Low-Carbon Technologies Advance Access, 1-7.

doi: 10.1093/ijlct/ctt083

Contexts	Outcomes
Experimental and optical analysis of a static low-	The ray tracing on the single LCET
concentration evacuated tube (LCET) solar collector	revealed that the overall average
for medium-temperature applications was performed.	optical efficiency could reach 76.9%
	between 0 and 60° incident angles, a
The LIGHTTOOL software was used for ray tracing to	very attractive value for medium
evaluate the LCET solar collector optical performance	temperature applications.
at different incident angles.	

13. Studies of Optical/Thermal Simulation (emphasis: building/ system)

13.1. BI, Several systems

1. Maurer Chr. and Kuhn T. E., Variable g value of transparent façade collectors, 2012: Energy and Buildings 51, 177–184.

http://dx.doi.org/10.1016/j.enbuild.2012.05.011

Contexts	Outcomes
Transparent solar thermal collectors (TSTC) $ ightarrow$	A new Type 871 was developed which is
collector model with an advanced calculation of the	capable of modelling transparent solar
transmission of diffuse radiation and a connection to	thermal collectors in a very detailed
the building $ ightarrow$ allows analysis of collector gains and g	way while opening the door to coupled
value.	system simulations with a building and
	an HVAC system.
The model was implemented as a TRNSYS Type and a	
coupled simulation between a collector and a room	The validation of the models has been
was presented for different façade constructions.	successful.
An HVAC system was presented together $ ightarrow$ possible	
reductions of primary energy	
Frankfurt was chosen for the meteorological data.	

2. D. Saelens, W. Parys, J. Roofthooft, A. Tablada de la Torre, Reprint of "Assessment of approaches for modeling louver shading devices in building energy simulation programs, 2014: Energy and Buildings 68, Part C, 799–810.

http://dx.doi.org/10.1016/j.enbuild.2013.11.031

Contexts	Outcomes
A ray-tracing method was developed to describe the	The use of a simplified implementation
global solar transmittance of louver shading devices.	of SFs is possible within acceptable
The developed method was integrated in the dynamic	margins by implementing average
building energy simulation program TRNSYS to assess	results from ray-tracing calculations.
the cooling demand as well as the required peak	
cooling power in a south oriented office room. The	
proposed integrated approach allowed the calculation	
of the solar transmittance for each time step.	
For the shading device a two-dimensional angular and	
time dependent model was adopted.	
Building simulation model: simulations were	
conducted for a typical moderate Belgian climate.	

3. Baruchi I., Chorin M. B., Freedman B. and Sovran I., Modeling of building integrated low concentration photovoltaic glazing windows, 2010: Proceedings of the SPIE 7785.

DOI: 10.1117/12.861524

Contexts	Outcomes
A transparent PV double glazed unit which exhibited three main features - concentrating direct solar rays on PV cells, allowing a viewer to see through the window a non-distorted image and having good thermal isolation properties, was developed.	A model which simulated seasonal and day/night variations of the optical and thermal behavior of the window as a function of installation location was presented.
	The outputs of the model included PV power generation and the change in the required power for heating/cooling due to the elimination of direct irradiation into the room.
	That outputs were utilized to optimize the optical design in order to achieve best overall energy saving performance.

4. H. Manz and Th. Frank, Thermal simulation of buildings with double-skin façades, 2005: Energy and Buildings 37, 1114–1121.

http://dx.doi.org/10.1016/j.enbuild.2005.06.014

Contexts	Outcomes
Highly glazed commercial buildings with double-skin	Three level modelling, design method
façades may overheat during summertime; thus, in	for the whole building with double-skin
order to optimize thermal comfort and minimize	façades. Static coupling between CFD
cooling loads, the thermal behaviour of these	and building energy simulation. These
buildings requires careful investigation at the design	three levels are: modelling the optics of
stage. Complex physical phenomena (optical,	the layer sequence of the double-skin
thermodynamic, fluid dynamic processes are	façade by a spectral method, modelling
involved).	thermodynamics and fluid dynamics of
	the double-skin façade by CFD,
	modelling building by a building energy
	simulation tool.

14. Studies about other types of simulation

14.1. Exergy analysis (emphasis: system)

D. Fiaschi and A. Bertolli, Design and exergy analysis of solar roofs: A viable solution with esthetic appeal to collect solar heat, 2012: Renewable Energy 46, 60-71.

http://dx.doi.org/10.1016/j.renene.2012.03.013

Contexts	Outcomes
Solar Roof (SR): ducts on the bottom side of copper	USR showed 30-60% efficiency. GSR
roofs to collect a fraction of the absorbed solar	performance showed significant
radiation; an innovative solar collector with high	improvement only over cold seasons;
aesthetic value.	Compared with a commercial reference
	flat plate collector (FPC) model, the
Basic proposed system: Unglazed Solar Roof (USR).	efficiency of USR was reduced by 20%
	over the whole operating field. The
Additional system: Glazed Solar Roof (GSR).	exergy efficiency curves showed
	optimization at temperatures well
	above those in flat plate collectors.
	Integration with a domestic hot water
	system showed a potential yearly solar
	fraction of 53% with USR and 60% with
	GSR.

14.2. Energetic/lighting simulation (emphasis: building/system)

M. Janak, Coupling building energy and lighting simulation, 1997: proceedings BS1997

http://www.ibpsa.org/proceedings/BS1997/BS97_P036.pdf

Contexts	Outcomes
A new method of direct run – time coupling between	The method of direct run - time
building energy simulation and global illuminance	coupling between building thermal and
simulation was presented. Direct coupling at the time	lighting simulation was proved to be
step level between ESP-r and RADIANCE offers	promising. It allows explicit modelling of
building energy simulation with access to an internal	important interactions between
illuminance calculation engine, and thereby, enabling	artificial lighting control and the rest of
modelling of the complex interactions between	the building energy domain. If a short
artificial lighting control and the rest of the building	time step and sub - hourly solar
energy domain in a fully integrated way.	irradiance or illuminance climate data
	are adopted, relatively realistic dynamic
	behaviour of the lighting control can be
	predicted.

14.3. Emergy analysis (emphasis: building/system)

F. Meillaud, J.-B. Gay, M.T. Brown, Evaluation of a building using the emergy method, 2005: Solar Energy 79, 204–212.

http://dx.doi.org/10.1016/j.solener.2004.11.003

Contexts	Outcomes
Emergy is the energy of one kind, usually solar energy,	The yearly emergy
which is required to make a service or product.	consumption/production of a building
Emergy methodology was adopted and the	was evaluated. This building was
application was a building. The LESO (Solar Energy	constructed according to special
Laboratory, Swiss Federal Institute of Technology,	environmental considerations, such as
Lausanne) was considered. The authors noted that	important the use of passive gains and
emergy was the most appropriate methodology to	it had low energy consumption (232
evaluate their system, because each type of flow	MJ/m ² year).
(monetary or information) could be taken into	
account.	Considering only energy and materials
	inputs, electricity was the largest input
The experimental LESO building is 3-stories containing	to the system (2.7E16 sej/year). The
faculty/students offices and a workshop. A PV	total emergy of the material inflows
installation was situated on the roof. The building was	was 1.7E16 sej/year, paper being the
constructed in 1981 with different solar façades. A	largest material input (5.7E15 sej/year).
homogenous south façade, replacing these units, was	The specific emergy (per mass) of some
built in 1999 in accordance with sustainable	common building materials was also
development strategies and a drastic reduction of the	evaluated and compared to non-
use of non-renewable energy.	renewable energy.
Units adopted: J _{em} = emergy per unit time (sej/year,	
solar emjoules per year).	

14.4. Sunlight simulation (emphasis: system)

A. Márquez-García, M. Varo-Martínez, R. López-Luque, Toolbox engineering software for the analysis of sunlight on buildings, 2013: International Journal of Low-Carbon Technologies.

doi: 10.1093/ijlct/ctt062

Contexts	Outcomes
Shadow, irradiance, daily radiant exposure functions	The developed tool can improve the
were presented (created by using Visual Basic). Those	method for establishing the best part
functions allowed the calculation, in an easy and fast	on a façade to set a generation device,
way, the daily radiant exposure in each point of a	e.g. PV panels or solar thermal
façade in an urban environment.	collectors.

15. Conclusions

In the frame of the present study, a literature review focusing on BI solar systems is conducted. The review includes systems which produce thermal, electrical or both thermal/electrical energy. Emphasis is given on the BI solar thermal systems while the other two types of configurations (electrical; thermal/electrical systems) are also included in order to have a more complete picture of the studies which have been done and the studies which are needed to be conducted as a future prospect.

In the field of energetic simulations of BI solar systems, there are more than 30 studies. Most of these investigations regard BI PV, BI PVT and skin façades while there are few studies about passive configurations (solar chimney and Trombe wall), BI Concentrating PV (CPV) and solar shades. Thus, it can be seen that there is a need for energetic simulations of BI solar thermal configurations, especially of active solar thermal systems which could provide hot air and/or water for building energy needs. Also it would be interesting the development of models about BI CPVT (Concentrating PV/Thermal) or BI CT (Concentrating Thermal) systems provided that low-cost and simple configurations will be selected. In general terms, most of the energetic simulations give emphasis to the system itself; thereby, there is a need for more studies which give emphasis to the building.

In the area of thermal simulations of BI solar systems, there are more than 35 studies. Most of these works are about BI PV, BI PVT and skin façades while there are few studies about BI solar thermal collectors, solar chimneys, Trombe walls and pipes integrated into the building. Thereby, there is a need for thermal simulations of BI solar thermal collectors since there are no more than 5 studies in this type of systems. As it was previously mentioned, the development of models about BI CPVT or BI CT systems could also be examined as well as systems which include heat storage solutions for example with PCM. Also in the field of thermal simulations the greatest part of the investigations gives emphasis to the system and consequently, there is need for more studies which give emphasis to the building.

Moreover, there are more than 20 studies which combine energetic and thermal simulation. In that field, there is also the same tendency: the greatest part of the works is about BI PVT while there are only few studies (no more than 2) about BI solar thermal systems. It should be noted that some of the BI PVT and BI solar thermal systems of these works include transpired collectors. Consequently, in a future prospect, energetic/thermal modelling studies about BI solar thermal configurations (with/without concentration, with/without PCM, etc.) could provide useful information. In the same way with the two previous categories, there is a need for studies which give emphasis on the building.

Concerning optical and optical/thermal simulations, there are no more than 10 studies (with emphasis on the system and on the building/system). These studies regard multiple configurations such as thinfilm luminescent solar concentrators, PV windows, skin façades and systems with louver shading. Thus, it can be seen that there is a gap in the literature in the field of optical models and further developments are needed since optical simulations could provide useful information for the behaviour of the BI solar thermal systems. Also for this category, there is a need for more studies which give emphasis on the building. Finally, it should be noted that in the literature there are also some models which regard other types of simulations such as emergy and exergy. Conclusively, in the current literature the greatest part of the models are thermal and/or energetic simulations of BI PVT (or PV) and skin façades and thereby, there is a need for thermal and/or energetic models about BI solar thermal systems (models which give emphasis to the system itself but also models which give emphasis to the building are needed). On the other hand, the optical-modelling studies are very few and certainly, more optical-modelling investigations are needed since they could provide useful information about the behaviour of the BI solar thermal systems from optical point of view.