

ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΡΓΑΣΙΑΣ INTERREG V-A ΕΛΛΑΔΑ-ΚΥΠΡΟΣ 2014-2020

BEACHTECH

Παράκτια διάβρωση λόγω κλιματικής αλλαγής: εκτίμηση και τρόποι αποτελεσματικής αντιμετώπισης σε τουριστικές περιοχές του Βορείου Αιγαίου και της Κύπρου

Κωδικός Πράξης: 5050552

Πακέτο Εργασίας 4	Εκτίμηση κινδύνου διάβρωσης στις πιλοτικές παραλίες Λέσβου, Χίου και Κύπρου
Παραδοτέο 4.1.4	Εκπαίδευση στη διαχείριση/ανάλυση των μετεωρολογικών, οπτικών και κυματικών δεδομένων σχετικών στελεχών Περιφέρειας και Δήμου

Κύριος Δικαιούχος Έργου	Πανεπιστήμιο Αιγαίου (ΤΩΘΒΕ-ΠΑ)
Επιστημονικός Υπεύθυνος Παραδοτέου	ΤΩΘΒΕ
Συμμετέχοντες Φορείς στο Παραδοτέο	ΠΤΑΒΑ, ΤΕΠΑΚ, Δ. Πέγειας
Ομάδα Σύνταξης Παραδοτέου	Α. Χατζηπαυλής, Θ. Χασιώτης
Ομάδα Υλοποίησης Παραδοτέου	Θ. Χασιώτης, Μ. Λοιζίδου, Μ. Ακουρδαλίτη, Ζ. Ανθής, Δ. Χατζημιτσής, Χ. Παπουτσά, Α. Νισαντζή, Γ. Τσαϊρης, Α. Καρίνου, Χ. Σάββας
Ημερομηνία	Οκτώβριος 2023
Διαδικτυακή πρόσβαση	http://beachtech.eu

ΔΕΣΜΟ

ΑΝΑΠΤΥΞΗΣ

Το παρόν αποτελεί αποκλειστική ευθύνη του ονόματος του δικαιούχου και δεν μπορεί σε καμία περίπτωση να αντικατοπτρίζει τις απόψεις της Ευρωπαϊκής Ένωσης, των συμμετεχουσών χωρών και της Διαχειριστικής Αρχής. Το παρόν κείμενο δημοσιεύτηκε με τη σύμφωνη γνώμη όλων των φορέων της σύμπραξης "BEACHTECH". Περιέχει υλικό τα δικαιώματα του οποίου ανήκουν στους δικαιούχους της πράξης "BEACHTECH", και το οποίο δεν μπορεί να αναπαραχθεί χωρίς άδεια από την σύμπραξη. Η έρευνα που οδήγησε στα αποτελέσματα του παρόντος κειμένου χρηματοδοτήθηκε από το Επιχειρησιακό Πρόγραμμα «Interreg V-A Ελλάδα-Κύπρος 2014-2020» (ΕΤΠΑ) και από Εθνικούς πόρους Ελλάδας και Κύπρου.

Η Σύμπραξη του Έργου

Πανεπιστήμιο Αιγαίου

Περιφερειακό Ταμείο Ανάπτυξης Βορείου Αιγαίου

Τεχνολογικό Πανεπιστήμιο Κύπρου

Δήμος Πέγειας Κύπρου

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **2** από **52**

ΠΕΡΙΕΧΟΜΕΝΑ

П	ΕΡΙΛΗΨΗ		4
1	ΕΙΣΑΓ	ΩΓH	5
~	VAUVO		~
Z	YAIKC	Ο ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΕΙΛΙΝΑΡΙΩΝ	6
	2.1	Λογισμικά (GUIs) ανάλυσης ανεμολογικών τάσεων και προβλέψης κυματικών χαρακτηριστικών από	
	ΑΝΕΜΟΛΟ	ΟΓΙΚΑ ΔΕΔΟΜΕΝΑ	7
	2.1.1	Λογισμικό (GUI) ανάλυσης ανεμολογικών δεδομένων	7
	2.1.2	Λογισμικό (GUI) εκτίμησης κυμάτων από ανεμολογικά δεδομένα	. 12
	2.2	ΛΟΓΙΣΜΙΚΑ (GUIs) ΕΚΤΙΜΗΣΗΣ ΠΑΡΑΚΤΙΑΣ ΔΙΑΒΡΩΣΗΣ ΚΑΙ ΠΛΗΜΜΥΡΑΣ	14
	2.2.1	Λογισμικό (GUI) εκτίμησης διάβρωσης και πλημμύρας (Στατικά μοντέλα)	. 14
	2.2.2	Λογισμικό (GUI) εκτίμησης διάβρωσης και πλημμύρας (Δυναμικά μοντέλα)	. 19
	2.3	Διαχειρίση και Αξιοποίηση Οπτικών Δεδομένων	23
	2.4	ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΔΕΔΟΜΕΝΩΝ ΚΥΜΑΤΟΓΡΑΦΩΝ	27
3	ПАРА	РТНМА	28
	3.1	ΜΑΝUAL ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ (GUI) ΑΝΑΛΥΣΗΣ ΑΝΕΜΟΛΟΓΙΚΩΝ ΔΕΔΟΜΕΝΩΝ	28
	3.2	ΜΑΝUAL ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ (GUI) ΕΚΤΙΜΗΣΗΣ ΚΥΜΑΤΩΝ ΑΠΟ ΑΝΕΜΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ	34
	3.3	ΜΑΝUAL ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ (GUI) ΕΚΤΙΜΗΣΗΣ ΔΙΑΒΡΩΣΗΣ ΚΑΙ ΠΛΗΜΜΥΡΑΣ (ΣΤΑΤΙΚΑ ΜΟΝΤΕΛΑ)	40
	3.4	ΜΑΝUAL ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ (GUI) ΕΚΤΙΜΗΣΗΣ ΔΙΑΒΡΩΣΗΣ ΚΑΙ ΠΛΗΜΜΥΡΑΣ (ΔΥΝΑΜΙΚΑ ΜΟΝΤΕΛΑ)	46

Περίληψη

Στα πλαίσια του έργου πραγματοποιήθηκαν σεμινάρια εκπαίδευσης μελών των τεχνικών υπηρεσιών των συνεργαζόμενων φορέων. Στα σεμινάρια παρουσιάστηκαν και διαμοιράστηκαν στους συμμετέχοντες αναλυτικά εγχειρίδια (manual) εφαρμογής εξειδικευμένων μεθοδολογιών παράκτιας διαχείρισης, ενώ πραγματοποιήθηκαν σχετικές επιδείξεις των εφαρμογών αυτών (workshops). Επίσης, παρουσιάστηκαν αναλυτικά οι τεχνικές εξαγωγής και αξιοποίησης των οπτικών δεδομένων του συστήματος παραλιακής παρακολούθησης, ενώ κατά τις εργασίες πεδίου οι συμμετέχοντες εκπαιδεύτηκαν στην τοποθέτηση των επιμέρους στοιχείων του συστήματος, καθώς και στην τοποθέτηση, χρήση των υδροδυναμικών οργάνων και εξαγωγή των καταγραφών.

Ευχαριστίες

Θα θέλαμε να ευχαριστήσουμε την Μετα-διδακτορική ερευνήτρια του ΤΩΘΒΕ κα Ι. Μονιούδη για τη βοήθεια της στην ολοκλήρωση του παραδοτέου.

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **4** από **52**

1 Εισαγωγή

Πέρα από την ανάπτυξη καινοτόμων μεθοδολογιών και εργαλείων καταγραφής και παρακολούθησης των παράκτιων διεργασιών, ένα σημαντικό ζήτημα είναι η μεταφορά τεχνογνωσίας και η σύνδεση μεταξύ επιστημόνων και τοπικών αρχών/φορέων. Με αυτό τον τρόπο, οι τοπικοί φορείς δύναται να είναι σε θέση να διαχειριστούν και να εφαρμόσουν σύγχρονα εργαλεία, τα οποία επιτρέπουν την καταγραφή κρίσιμων παραμέτρων παράκτιας διαχείρισης, όπως είναι η θέση της ακτογραμμής και η απόκρισή της στα ακραία καιρικά φαινόμενα (θύελλες), καθώς και το ανώτατο όριο της κυματικής αναρρίχησης από το οποίο μπορεί μακροπρόθεσμα να εξαχθεί πληροφορία για την θέση του αιγιαλού. Με βάση το παραπάνω πλαίσιο, πραγματοποιήθηκαν εκπαιδευτικά σεμινάρια με τους συνεργαζόμενους φορείς, στα οποία εξειδικευμένοι ερευνητές του Παν. Αιγαίου, εκπαίδευσαν προσφέροντας εξειδίκευση σε καινοτόμες (state-of-the-art) μεθοδολογίες. Παράλληλα, δημιουργήθηκαν σχετικά εγχειρίδια (manual) αναλυτικής περιγραφής των διεργαστικών σταδίων της εκάστοτε μεθοδολογίας, κάτι το οποίο αποτελεί ένα σημαντικό output του έργου τα οποία παραδόθηκαν στους συνεργαζόμενους φορείς. Με τον τρόπο αυτό, είναι σε θέση να συντηρούν και να χρησιμοποιούν τον επιστημονικό εξοπλισμό που αποκτήθηκε στα πλαίσια του έργου, ώστε να μπορούν αυτόνομα πλέον να προβαίνουν σε καταγραφές των παράκτιων διεργασιών, αλλά και εκτιμήσεις της παράκτιας μορφοδυναμικής των περιοχών ενδιαφέροντος τους. Έτσι, οι τοπικοί φορείς είναι σε θέση να αξιολογούν τα προβλήματα διάβρωσης των περιοχών τους χωρίς μεγάλες δαπάνες, ενώ αναπτύχθηκε μια σχέση μεταξύ Πανεπιστημίων και τοπικών φορέων η οποία κρίνεται πως είναι ιδιαίτερης σημασίας για μελλοντικές συνεργασίες.

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **5** από **52**

2 Υλικό εκπαιδευτικών σεμιναρίων

Στα πλαίσια του έργου πραγματοποιήθηκαν εκτενείς εργασίες πεδίου κατά τις οποίες οι συμμετέχοντες εκπαιδεύτηκαν στη βαθμονόμηση/«σετάρισμα», τοποθέτηση και συντήρηση των υδροδυναμικών οργάνων, καθώς και στην εξαγωγή, ανάλυση και αξιοποίηση των υδροδυναμικών δεδομένων. Επίσης, παρακολούθησαν και συμμετείχαν στις τεχνικές εργασίες τοποθέτησης των οπτικών συστημάτων παραλιακής παρακολούθησης, ενώ εκπαιδεύτηκαν περαιτέρω στις μεθοδολογίες εξαγωγής και αξιοποίησης των δεδομένων του συστήματος (παραγωγή μετα-δεδομένων). Για το σκοπό αυτό πραγματοποιήθηκαν 3 σεμινάρια/συναντήσεις στο Δήμο Πέγειας, στην Κύπρο για την εκπαίδευση μελών του τεχνικού προσωπικού του Δήμου, αλλά και ερευνητών του ΤΕΠΑΚ. Τα σεμινάρια έλαβαν χώρα σε αίθουσες του Δήμου Πέγειας και του ΤΕΠΑΚ, ενώ όλο το προσωπικό μετείχε και συνέβαλε στις εργασίες πεδίου που πραγματοποιήθηκαν στις αιθουσα του Πανεπιστημίου Αιγαίου, ενώ στελέχη του ΠΤΑΒΑ και υπηρεσιών της Περιφέρειας μετείχαν στις εργασίες πεδίου που πραγματοποιήθηκαν στις αιρογρανώθηκαν στις τοροικού και στην παραλία ελέγχου συστημάτων στις πιλοτικές παραλίες Πέτρας και Ιστορικού και στην παραλία ελέγχου συστημάτων/μεθοδολογιών της Ερεσού.

Πέρα από την ανταλλαγή χρήσιμων και εποικοδομητικών σκέψεων και πληροφορίας, τα σεμινάρια αυτά κάλυψαν τις ακόλουθες θεματικές ενότητες: (i) διαχείριση και αξιοποίηση των οπτικών δεδομένων των καμερών του συστήματος παρακολούθησης παράκτιων διεργασιών με χρήση καινοτόμων εργαλείων (τεχνικές ανάλυσης εικόνας με προγραμματιστικά εργαλεία – κώδικες και GUIs σε περιβάλλον Matlab) και (ii) εξοικείωση των συμμετεχόντων σε εξειδικευμένες μεθοδολογίες και λογισμικά που έχει αναπτύξει το εργαστήριο Παράκτιας Μορφοδυναμικής, Διαχείρισης και Θαλάσσιας Γεωλογίας του Πανεπιστημίου Αιγαίου, τα οποία προωθούνται ως εργαλεία παράκτιας διαχείρισης (UNEP-MAP, Integration of climatic variability and change into national strategies to implement the ICZM Protocol in the Mediterranean, http://www.themedpartnership.org/med/pfpublish/p/doc/828035e0d7964aee62a44807 b03a9d47). Το υλικό και τα εγχειρίδια των σεμιναρίων παρατίθενται αναλυτικά στις ενότητες που ακολουθούν.

> ΔΕΣΜΟΙ **ΑΝΑΠΤΥΞΗΣ**

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **6** από **52**

2.1 Λογισμικά (GUIs) ανάλυσης ανεμολογικών τάσεων και πρόβλεψης κυματικών χαρακτηριστικών από ανεμολογικά δεδομένα

Τα συγκεκριμένα λογισμικά είναι ιδιαίτερα χρήσιμα εργαλεία για την ανάλυση των ανεμολογικών δεδομένων των μετεωρολογικών σταθμών που εγκαταστάθηκαν στις δύο περιοχές, ενώ επίσης δίνουν τη δυνατότητα εκτίμησης του κυματικού καθεστώτος στα ανοιχτά με χρήση απλών ανεμολογικών δεδομένων. Τα εγχειρίδια/manual που επιδείχθηκαν και παραδόθηκαν στους συμμετέχοντες ακολουθούν στις επόμενες σελίδες.

2.1.1 Λογισμικό (GUI) ανάλυσης ανεμολογικών δεδομένων

Το συγκεκριμένο λογισμικό δίνει την δυνατότητα στο χρήστη να πραγματοποιήσει βασική ανάλυση των ανεμολογικών παραμέτρων ευέλικτα και αυτοματοποιημένα. Τα διεργαστικά βήματα χρήσης του λογισμικού περιγράφονται παρακάτω, ενώ το αναλυτικό manual που διαμοιράστηκε στους συμμετέχοντες παρατίθενται στο Παράρτημα – 3.1.1.

Βήμα 1: Έλεγχος directory αποθήκευσης δεδομένων ανάλυσης

Βήμα 2: Εισαγωγή ανεμολογικών δεδομένων

<u>Βήμα 3: Γενικευμένη ανάλυση (ανά ανεμολογική κατεύθυνση)</u> Γενικευμένη ανάλυση

- (1) Επιλέγουμε τη μονάδα μέτρησης της ταχύτητας του ανέμου
- (2) Δίνουμε το υψόμετρο του μετεωρολογικού σταθμού (z) για να υπολογίσει το GUI την ταχύτητα U10 βάσει του ακόλουθου τύπου:

$$U10 = U(Z)(\frac{10}{Z})^{1/7}$$

- (3) Επιλέγουμε έναν από τους 8 κύριους τομείς διευθύνσεων του ανέμου
- (4) Πατάμε 'Calculate wind characteristics' για να πραγματοποιηθεί γενικευμένη ανάλυση για τον τομέα που επιλέξαμε
- (5) Δίνουμε ένα όνομα αρχείου
- (6) Αποθηκεύουμε τον πίνακα με το όνομα που δώσαμε στο (5), πατώντας 'Save the resulted table'

<u>Βήμα 4: Έλεγχος αρχείου εξόδου (output)</u>

<u>Βήμα 5: Δημιουργία ροδογράμματος γενικευμένης ανάλυσης</u>

<u>Βήμα 6: Εξειδικευμένη ανάλυση (με χρήση εύρους κατευθύνσεων)</u>

<u>Βήμα 7: Έλεγχος αρχείου εξόδου (output)</u>

<u>Βήμα 8: Δημιουργία ροδογράμματος εξειδικευμένης ανάλυσης</u>

Βήμα 9: Αποθήκευση ροδογράμματος

2.1.2 Λογισμικό (GUI) εκτίμησης κυμάτων από ανεμολογικά δεδομένα

Το συγκεκριμένο λογισμικό δίνει την δυνατότητα στο χρήστη να πραγματοποιήσει εκτίμηση των βασικών κυματικών χαρακτηριστικών (ύψος και περίοδος κυματισμών στα ανοιχτά) στη βάση ανεμολογικών δεδομένων με χρήση μεθοδολογιών wind-wave hindcasting. Το αναλυτικό manual που διαμοιράστηκε στους συμμετέχοντες παρατίθενται στο Παράρτημα – 3.1.2, ενώ τα βήματα χρήσης του λογισμικού περιγράφονται στις επόμενες σελίδες.

<u>Βήμα 1: Έλεγχος directory αποθήκευσης δεδομένων ανάλυσης</u>

<u> Βήμα 2: Εισαγωγή παραμέτρων εισόδου</u>

<u>Βήμα 3: Υπολογισμός σημαντικού κύματος</u>

<u>Βήμα 4: Υπολογισμός ισοδύναμου κύματος</u>

<u> Βήμα 5: Αποθήκευση αρχείων</u>

2.2 Λογισμικά (GUIs) εκτίμησης παράκτιας διάβρωσης και πλημμύρας

Τα συγκεκριμένα λογισμικά είναι ιδιαίτερα χρήσιμα για την εκτίμηση της παράκτιας διάβρωσης και πλημμύρας στη βάση απλών τοπογραφικών (εγκάρσιες παραλιακές διατομές – προφίλ) και υδροδυναμικών δεδομένων (κυματικά ύψη) που προσδιορίζονται εύκολα από το λογισμικό Wave Estimation GUI που παρουσιάστηκε στην ενότητα 2.2.2. Για το σκοπό αυτό πραγματοποιείται χρήση τόσο στατικών, όσο και δυναμικών μορφοδυναμικών μοντέλων μίας γραμμής (1-D) τα οποία είναι ιδιαίτερα διαδεδομένα στην παγκόσμια ερευνητική κοινότητα. Τα εγχειρίδια των λογισμικών που παραδόθηκαν και με τα οποία εξοικειώθηκαν οι συμμετέχοντες παρατίθενται στο παράρτημα, ενώ τα απλά βήματα χρήσης τους παρατίθενται στις σελίδες που ακολουθούν.

2.2.1 Λογισμικό (GUI) εκτίμησης διάβρωσης και πλημμύρας (Στατικά μοντέλα)

Το συγκεκριμένο λογισμικό δύναται να πραγματοποιήσει εκτιμήσεις διάβρωσης και πλημμύρας με χρήση στατικών μορφοδυναμικών μοντέλων, στη βάση απλών δεδομένων εισόδου (παραλιακών κλίσεων ή παραλιακά προφίλ που έχουν ληφθεί από το πεδίο). Πέρα από το αναλυτικό manual (Παράρτημα – 3.1.3), τα διεργαστικά βήματα που εξηγήθηκαν και επιδείχθηκαν αναλυτικώς στους συμμετέχοντες/χρήστες είναι τα ακόλουθα.

<u>Βήμα 1: Έλεγχος directory αποθήκευσης δεδομένων ανάλυσης</u>

<u>Βήμα 2: Εισαγωγή μορφολογικών παραμέτρων</u>

<u>Βήμα 3: Εισαγωγή κυματικών παραμέτρων</u>

<u> Βήμα 5: Χρήση (τρέξιμο) μορφοδυναμικών μοντέλων - Α</u>

<u> Βήμα 6: Χρήση (τρέξιμο) μορφοδυναμικών μοντέλων - Β</u>

<u>Βήμα 7: Οπτικοποίηση αποτελεσμάτων</u>

<u>Βήμα 8: Υπολογισμός οπισθοχώρησης ακτογραμμής για σενάριο ανόδου θαλ. στάθμης</u>

2.2.2 Λογισμικό (GUI) εκτίμησης διάβρωσης και πλημμύρας (Δυναμικά μοντέλα)

Το συγκεκριμένο λογισμικό δύναται να πραγματοποιήσει εκτιμήσεις διάβρωσης και πλημμύρας με χρήση δυναμικών μορφοδυναμικών μοντέλων, στη βάση απλών δεδομένων εισόδου (παραλιακών κλίσεων ή παραλιακά προφίλ που έχουν ληφθεί από το πεδίο). Το αναλυτικό manual παρατίθεται στο παράρτημα (3.1.4), ενώ τα διεργαστικά βήματα που εξηγήθηκαν και επιδείχθηκαν αναλυτικώς στους συμμετέχοντες/χρήστες είναι τα ακόλουθα.

View the video Calculate coastline migration

Plot initial and final profile

Beach retreat

Βήμα 1: Έλεγχος directory αποθήκευσης δεδομένων ανάλυσης

Beach retreat

Plot initial and final profile

Βήμα 3: Εισαγωγή περιβαλλοντικών παραμέτρων (κύματα και ιζήματα)

<u> Βήμα 4: Χρήση (τρέξιμο) μορφοδυναμικών μοντέλων - Α</u>

<u>Βήμα 5: Χρήση (τρέξιμο) μορφοδυναμικών μοντέλων - Β</u>

		BEACH RETRE	AT ESTIMATO	R	
ν το μοντελό τρεξει		(DYNAMIC	MODELS)		
πιτυχως μας εμφανιζει	Browse output directory	C:\Users\ISAVELA\Desktop\BRE	_3 results\	Copyright 2011 by UICP and University of Aegean (I. Monioudi, A.F. Velegrakis) Models used: (i) Leonfyzev (Battjes and Janssen, 1978;	
ο μηνυμα Της model	Insert environmental con	ditions			
as run successfully' και	Beach profile file Wave height	Wave period Wave ang	le Sediment size		
ταταμε ΌΚ'.	Browse 1.5	4.48 0	0.5	Leon Th. Karambo	tyev, 1996) modified by: as, C. Koutitas, M. Vousdoukas,
	distance (m), 2nd column: (units in m)	(units in sec) (units in degre	es) (units in mm)	L Mon	loudi and A.F. Velegrakis on and Kraus, 1989) modified b
ν το μοντελο	elevetion (m))			Th. Ki	arambas and C. Koutitas
αρουσίασε αστάθεια	Beach profile evolution	without sea level rise			
ότε βγαίνει μήνυμα ότι	Insert simulation time	Run Leont'yev Insert simu		ulation time Run SBEACH	
ο μοντελο σταματήσε να	Calculate coastline migration		Calculate coastline migration		
	Retreat (-) or Accretion (+)			ccretion (+) View the video	
π x 'The model stopped	Plot i	nitial and final n	ave ran successfully	Plot in	nitial and final profile
unning it has ran 5	(units in m)		OK		
	Beach profile evolution v	vith sea level rise	_		
ιερίπτωση πιθανό να	Sea level rise:	(units in m)	Sea level	rise:	(units in m)
πάρχει λάθος στα	Insert simulation time	Run Leont'yev	Insert simulation	ontime	Run SBEACH
εδομένα σας (π.χ. να					
χετε υπολογίσει λάθος	View the video Calculat	e coastline migration	View the vide	eo Calculat	e coastline migration
ο κύμα.	[Beach retreat.			Beach retreat:
	Plot initial and final profile		Plot initial and	final profile	

<u>Βήμα 6: Υπολογισμός παραλιακής οπισθοχώρησης</u>

<u>Βήμα 7: Οπτικοποίηση εξέλιξης μορφολογίας (βίντεο)</u>

		BEACH	DYNAMIC M	DELS)	OR				
Browse output directory		:\Users\ISAVEL	A\Desktop\BRE_3	results\	Copyright 2011 by University of A	Copyright 2011 by UNEP and			
Insert environmen	tal cond	litions			(I. Monioudi, A.F. Models used:				
Browse	e height	Wave period	Wave angle	Sediment size	(i) Leontyev (Battjes and Janssen, 1978; Leontyev, 1996) modified by:		(i) Leont'yev (Battjes and Janssen, 1978; Leont'yev, 1996) modified by:		
(1st column: cross-shore distance (m), 2nd column: (un elevetion (m))	nits in m)	(units in sec)	(units in degrees)) (units in mm)	In, Karamoas L Monio (ii) SBEACH (Larson	, C. Kouttas, M. Vousdoukas, udi and A.F. Velegrakis and Kraus, 1989) modified by:			
Beach profile evo	lution w	vithout sea	level rise		Th. Kar	ambas and C. Kouttas			
Insert simulation ti	me	Run Leon	ťyev	Insert sim	ulation time	Run SBEACH			
Calculate coastline m	igration	View the	video	Calculate coa	stline migration	View the video			
Retreat (-) or Accretion	1 (+)	view une	NGC0	Retreat (-) or A	ccretion (+)	view the video			
-1.32 (units in m)	Plot in	itial and final	profile	ure 2			- 0		
Beach profile evo	lution w	ith sea leve	el rise		9 🗶 🛯 🗉				
Sea level rise:		(units in m)							
Insert simulation time		Run Leont'ye	2V						
View the video	Calculate	coastline mi	gration				/		
Plot initial and final p	rofile	Beach retre	eat						
		c () _ c							
λεπουμε το Βίντε	ο της ε	ξελιζης τη	S						

<u>Βήμα 8: Εκτίμηση παραλιακής οπισθοχώρησης με χρήση σεναρίων ανόδου θαλ. στάθμης</u>

2.3 Διαχείριση και Αξιοποίηση Οπτικών Δεδομένων

Ακολουθεί ο οδηγός που συντάχθηκε στα πλαίσια του έργου και διαμοιράστηκε στους συμμετέχοντες αναφορικά με τη διαχείριση των οπτικών δεδομένων. Πιο συγκεκριμένα, παρουσιάστηκε και επιδείχτηκε η χρήση εξειδικευμένων εργαλείων (κώδικες σε γλώσσα matlab) που έχουν αναπτυχθεί από το Τμήμα Ωκεανογραφίας και Θαλασσίων Βιοεπιστημών του Πανεπιστημίου Αιγαίου για την εξαγωγή ακτογραμμής και θέσης της ανώτατης κυματικής αναρρίχησης από τα οπτικά δεδομένα του συστήματος παραλιακής παρακολούθησης. Οι οδηγίες που μοιράστηκαν στους ενδιαφερόμενους παρατίθενται στο κείμενο που ακολουθεί, το οποίο έχει γραφεί στα αγγλικά, μιας και είναι η γλώσσα στην οποία έχουν γραφθεί οι συγκεκριμένοι κώδικες (βλ. Παράρτημα – 3.1.5).

Instructions to apply shoreline and wave-run up detections

The purpose of this guide is to extract shoreline and wave run-up positions on the TIMEX and IMMAX imagery respectively. The TIMEX and IMMAX images (.m files) can be downloaded remotely from the server or/and from the relevant station PC of each area. This guide is accompanied by specific files containing 1) the necessary codes needed to apply the detections; and 2) demo data to get familiarized with the process. The demo data used here come from Coral Bay, Cyprus, containing 10 mosaics, deriving from 10 days at the beginning of January 2023 at 14:00 for each day. A demo run has already been applied for 2023_01_10_14_00_00, the results of which you will find at the relative folders.

---- Shoreline Detections ----

All the necessary files/codes are located within the folder named "01_timex_detector".

Step 01 - Automatic Detections

Open folder "01_timex_worm_detector_auto" and load the script "timex_detector_auto.m" in matlab. Then modify the code according to your directory. More specifically:

- Line 18: SRCPATH -> Set the directory of the TIMEX imagery (.m files). In case you use the demo data of this guide, this shall be ".....\Demo_Mosaics\geo_data\geo_timex "
- Line 31: SAVEPATH -> Set the local directory where the extracted shoreline (automated) will be saved. According to the file system/tree directory commonly used, this shall be "....\01_timex_worms\ 02_timex_worms_auto_pixel_units"

User defined parameters:

- Line 19 : SRCMOSAIC -> This is where you identify the specific TIMEX on which the detection will be applied. e.g. "timex_2023_02_20_14_00_00.mat"
- Line 20 : decrapify -> binary parameter, can be set as 1 or 0. 1 applies specific fixes (used in Ammoudara case check also lines 318-322). It can be removed together with lines 318-322, or set it as 0.
- **Lines 25-30 :** Check the comments and modify appropriately

ΑΝΑΠΤΥΞΗΣ

- **Line 37: rootparams.x0** -> set manually the value of x, in order to identify the starting point of the shoreline detection.
- **Line 38: rootParams.ySpan** -> set manually the range of y, in order to help identification of the starting point of the shoreline detection.
- **Lines 41-44 :** Check the comments and modify appropriately

* Note that Lines 142-316: Can be excluded from the code, these were used in the case of Ammoudara.

Step 02 - Manual Detections

Open folder "03_ 03_timex_worm_detector_manual" and load the script "timex_detector_manual.m" in matlab. Then modify the code according to your directory. More specifically:

- Line 19: mosaicpath -> Set the directory of the TIMEX imagery (.m files). In case you use the demo data of this guide, this shall be ".....\Demo_Mosaics\geo_data\geo_timex "
- Line 20: autopath -> Set the directory of the automatic detections '....\01_timex_detector\02_timex_worms_auto_pixel_units';
- Line 21: outpath -> Set the local directory where the extracted shoreline (automated) will be saved. According to the file system/tree directory commonly used, this shall be '....\01_timex_detector \04_timex_worms_manual_pixel_units';

User defined parameters:

- Line 26: MOSAIC -> This is where you identify the specific TIMEX on which the detection will be applied. e.g. "timex_2023_02_20_14_00_00.mat"
- Line 125: hrect -> Set the desired position of the blue box used for correction (has to be changed for each new area accordingly).

* When all set, run the code. A figure of the TIMEX image and the relevant automated detection should appear, containing also a blue box. You can move the blue box at the area of interest (i.e. where you want to apply corrections) and add nodes accordingly (1, 5, 10, 20, 50) from the list below.

Step 03 - Data Handling

The shorelines that have been edited manually are stored in folder "04 04 timex worms manual pixel units" while the automatically extracted shorelines are placed in folder "02 timex worms auto pixel units". A master directory is needed in order to store the manually extracted shorelines + the automatically extracted shorelines that didn't need to pass through manual detections. This master directory shall be folder "05_merged_timex_worms_pixel_units". As good practice, it is suggested to first copy-paste the manually edited shorelines of folder 04, and then copy-paste the automated shorelines of folder 02, WITHOUT REPLACING THE ONES THAT HAVE ALREADY BEEN COPIED FROM FOLDER 04.

Step 04 - Georectification of the final shorelines

Till here shoreline detection has been applied, however the shorelines (worms) are not yet georectified. To do so, open folder "06_ transform_pixworms2utmworms" and load the script pix2utm_worm.m in matlab. Then modify the code according to your directory. More specifically:

- Line 3: SRCPATH -> Set the directory of the final shorelines (in pixel units). This shall be the master directory "....\01_timex_ detector \05_merged_timex_worms_pixel_units".
- **Line 4: OUTPATH** -> Set the directory where the final shorelines (in utm cords) will be stored. This shall be ".....\01_timex_ detector \07_merged_timex_worms_utm".
- Line 19: demomosaic -> A demo, geo-referenced mosaic is used to convert the coordinates of the stored shorelines from pixel units to UTM (or any other projection system, according to the geo-rectification process). Set the path of this one mosaic. In case you use the demo data, choose any date, e.g. "....\Demo_Mosaics\geo_data\geo_timex\timex_2022_12_13_14_00_00.mat".

---- Wave run-up Detections ----

All the necessary files/codes are located within the folder named "02_immax_detector".

Step 01 - Automatic Detections

Load the script "immax_detector_auto.m" in matlab. Then modify the code according to your directory. More specifically:

- Line 10: SRCPATH -> Set the directory of the IMMAX imagery (.m files). In case you use the demo data of this guide, this shall be ".....\Demo_Mosaics\geo_data\geo_immax "
- Line 11: outpath -> Set the local directory where the extracted wave run-up line (automated) will be saved. According to the file system/tree directory commonly used, this shall be "....\02_immax_detector\01_immax_worms_auto".

User defined parameters:

- Line 13: MOSAIC -> This is where you identify the specific IMMAX mosaic on which the detection will be applied. e.g. _2023_01_10_14_00_00.mat".
- **Lines 18-23:** Check the comments and modify appropriately
- **Lines 27-42:** Check the comments, get familiarized by using experimental values and modify appropriately. Depending on the field of vision of the cameras, the light conditions, and other conditions, these parameters differ from one area to another.

Step 02 - Manual Detections

Load the script "immax_detector_manual.m" in matlab. Then modify the code according to your directory. More specifically:

- **Line 32: mosaicpath** -> Set the directory of the IMMAX imagery (.m files). In case you use the demo data of this guide, this shall be "....\Demo_Mosaics\geo_data\geo_immax".
- Line 33: autopath -> Set the directory of the automatic detections
 "....\02_immax_detector\01_immax_worms_auto".
- Line 34: outpath -> Set the local directory where the extracted wave run-up lines (worms) will be saved after the manual detection/correction. According to the file system/tree directory commonly used, this shall be "....\02_immax_detector\02_immax_worms_manual".

User defined parameters:

ΑΝΑΠΤΥΞΗΣ

- Line 39: MOSAIC -> This is where you identify the specific TIMEX on which the detection will be applied. e.g. _2023_01_10_14_00_00.mat".
- **Line 46: xlims** -> Set the desired min-max X-limits. No line/worm will be produced outside the defined limits.
- Line 30: runmode-> Binary value (1 or 2). If 1, then applies a fix on the automated IMMAX worm. If 2, then digitization of the IMMAX worm starts from scratch (i.e. without the help of the automatically detected IMMAX worm).
- Line 134: hrect -> Set the desired position of the blue box used for correction (has to be changed for each new area accordingly).

* When all set, run the code. A figure of the IMMAX image and the relevant automated detection should appear (depending also from the runmode), containing also a blue box. You can move the blue box at the area of interest (i.e. where you want to apply corrections) and add nodes accordingly (1, 5, 10, 20, 50) from the list below.

Step 03 - Data Handling

The IMMAX lines that have been edited manually are stored in folder "02_immax_worms_manual" while the automatically extracted shorelines are placed in folder "01_immax_worms_auto". A master directory is needed in order to store the manually extracted lines + the automatically extracted lines that didn't need to pass through manual detections. This master directory shall be folder "03_immax_worms_merged". As good practice, it is suggested to first copy-paste the manually edited shorelines of folder 02, and then copy-paste the automated shorelines of folder 01, <u>WITHOUT REPLACING THE ONES THAT HAVE ALREADY BEEN COPIED FROM FOLDER 02</u>.

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **26** από **52**

2.4 Διαχείριση και αξιοποίηση δεδομένων κυματογράφων

Πραγματοποιήθηκε εξοικείωση των συμμετεχόντων με το λογισμικό Ruskin (Εικόνα 1) το οποίο αποδίδει μια πρώτη γενική απεικόνιση των καταγεγραμμένων δεδομένων από τα όργανα μέτρησης (κυματογράφοι RBR). Παράλληλα, επιδείχθηκε ο τρόπος εξαγωγής των δεδομένων σε κατάλληλη μορφή για περαιτέρω επεξεργασία τους (μετατροπή από αρχεία τύπου .rsk σε αρχεία τύπου .txt). Τέλος, διαμοιράστηκε στους χρήστες κώδικας (scipt) γραμμένος σε γλώσσα matlab (βλ. Παράρτημα – 3.1.5) και παρουσιάστηκε πως μπορούν με απλές αλλαγές (αλλαγή των directory/path και της ονοματολογίας των αρχείων) να προβούν σε αναλύσεις των κυματικών δεδομένων.

Εικόνα 1: Το λογισμικό Ruskin που χρησιμοποιείται για την εξαγωγή και πρώτη οπτικοποίηση των δεδομένων από τους κυματογράφους RBR.

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **27** από **52**

3 Παράρτημα

3.1 Manual χρήσης λογισμικού (GUI) ανάλυσης ανεμολογικών δεδομένων

Wind Data Analysis GUI

Manual

Introduction

1. General characteristics

Wind is air in motion with respect to the surface of the earth. The general characteristics of the wind are the *direction*, from which it originates and the *velocity/speed*.

1.1 Wind direction

It is important to know how wind direction is recorded and reported. Wind direction is the compass direction from which the wind blows. For example, a northerly wind blows from the north to the south. The wind direction is expressed in degrees (0° to 360°) starting from the North and progressing clockwise (the point of 0° is the same with the point of 360°). 8 main and 8 secondary directions are recognized as depicted in Figure 1 and on Table 1.

Figure 1. 8 main and 16 secondary directions.

Wind	Main direction	Direction-sector
North	0°	338-23°
Northeast	45°	23-68°
East	90°	68-113°
Southeast	135°	113-158°
South	180°	158-203°
Southwest	225°	203-248°
West	270°	248-293°
Northwest	315°	293-338°

Table 1. The 8 main directions.

1.2 Wind velocity (or intensity)

Wind velocity is the distance that an air mass covers in the unit of time. The wind velocity is affected by the different temperatures of atmospheric layers. The velocity at the height of 10m above sea level has been defined as a representative velocity. So, if our measurements are recorded at a different height, we need to convert the wind velocity from the height of measurements to the height of 10 m above sea level, using the following equation:

$$U10 = U(Z)(\frac{10}{Z})^{1/7}$$

where U(z) is the wind velocity at the height of the measurements (z) and U_{10} is the wind velocity at the height of 10 m.

There are several units of measurements such as: meters per second (m/sec), kilometers per hour (km/h), miles per hour (miles/h) and knots (knots = 1,852 m/h). The correlation between them is the following:

1 m/s = 3.6 km/h = 1.944 knots = 2.237 miles/hour.

Historically, the Beaufort wind force scale provides an empirical description of wind speed based on observed sea conditions. The Beaufort scale was based on the equation:

 $U_{10} = 0.836 B^{3/2}$,

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

ΔεΣΜΟ

ΑΝΑΠΤΥΞΗΣ

where B is Beaufort Number and U_{10} is the wind speed in meters per second at a height of 10 meters.

Wind in	tensities in Beaufort	Wind velocity				
В	Wind situation	m/s	km/h	knots	miles/h	
0	Calm	0-0.2	< 1	< 1	<1	
1	Light air	0.3-1.5	1-5	1-3	1-3	
2	Light breeze	1.6-3.3	6-11	4-6	4-7	
3	Gentle breeze	3.4-5.4	12-19	7-10	8-11	
4	Moderate breeze	5.5-7.9	20-28	11-16	13-18	
5	Fresh breeze	8.0-10.7	29-38	17-21	19-24	
6	Strong breeze	10.8-13.8	39-49	22-27	25-31	
7	Moderate gale	13.9-17.1	50-61	28-33	32-38	
8	Fresh gale	17.2-20.7	62-74	34-40	39-46	
9	Strong gale	20.8-24.4	75-88	41-47	47-54	
10	Whole gale	24.5-28.4	89-102	48-55	55-63	
11	Storm	28.5-32.6	103-117	56-63	64-74	
>=12	Hurricane	>= 32.7	>= 118	>= 64	>=75	

Table 2. Correlation between Beaufort scale and wind velocity according with the National Meteorological Service.

1.3 Windrose

A wind rose is a graphic tool used by meteorologists to give a succinct view of how wind speed and direction are typically distributed at a particular location. Presented in a polar coordinate grid, the wind rose shows the frequency of winds blowing from particular directions. The length of each spoke around the circle is related to the frequency that the wind blows from a particular direction per unit time. Each concentric circle represents a different frequency, emanating from zero at the center to increasing frequencies at the outer circles. A wind rose plot may contain additional information, in that each spoke is broken down into color-coded bands that show wind speed ranges. Wind roses typically use 8 or 16 cardinal directions, such as north (N), NNE, NE, etc., although they may be subdivided into as many as 32 directions.

Figure 2. Windrose of wind data from the meteorological station in the University Hill.

Wind data consist records of the wind every half an hour or every hour and include the date and time of the records, the wind velocity and the wind direction. The analysis of the wind data includes:

- 1) Conversion of the velocity units in m/s (if the measurements are made in a different unit of measurement).
- Reduction of the velocity from the height of measurements to the height of 10 m above sea level (U₁₀).
- Estimation for each of the 8 main direction-sector and for each Beaufort number, of the wind frequency, mean wind velocity and mean wind duration

This GUI is consisted of the exe file Wind_analysis.

How to use the program

Once MCR is installed the platform can run by simply double-clicking on the Wind_analysis.exe, then the following screen appears (it might take some time to open):

🛃 wind_analysis								
WIND DATA	WIND DATA ANALYSIS							
Browse output directory Browse wind data input file								
Specify the units of wind velocity M/S knots km/h miles/h (m) Ceneral analysis Select wind direction N NE E SE S SW W NW Calculate wind characteristics Beaufort Frequency Velocity (m/s) Duration (sec)	Specified analysis Insert a range of wind directions From to (units in degrees) Insert a range of wind velocities From to (units specified by the user) Calculate wind characteristics Frequency Mean Velocity (m/s) Duration (sec)							
Enter filename Save the resulted table Create windrose Title	Enter filename Save the resulted table Create windrose Title							
Plot windrose Plot windrose Image: Second state of the second state								

Figure 3. The figure of the Wind_analysis GUI.

27 27 27 27 27 27	2 2 2 2 2	2010 2010 2010 2010 2010 2010	11 12 13 14 15	0 0 0 0	000000000000000000000000000000000000000	10.6 8.8 5.6 8.1 6.3	139 112 125 129 95
27	2	2010	10	0	0	11.3	103
27	2	2010	18	ŏ	ŏ	6.9	113
27	2	2010	19	0	0	11.3	98
27	2	2010	20	0	0	11.9	110
27	2	2010	21	0	0	13.8	106
27	2	2010	22	0	0	18.8	115
2/	2	2010	23	0	0	20.6	125
2/		2010	24	0	0	20	128
20	5	2010	2	Š.	8	10.0	122
20	5	2010	2	ŏ	ŏ	16.3	132
28	5	2010	4	ŏ	ŏ	16.3	140
28	2	2010	5	ŏ	ŏ	13.1	133
28	2	2010	6	ō	ō	12.5	127
28	2	2010	7	0	0	9.4	22
28	2	2010	8	0	0	8.8	23
28	2	2010	9	0	0	10	23
28	2	2010	10	0	0	7.5	141
28	2	2010	11	0	0	8.1	140
28		2010	- 12	0	0	8.1	148

Figure 4. An example of an input txt file.

First of all the user should browse a txt file that will include data of wind velocity and direction measurements. The txt file should have the format shown in Figure 4, where 1st column is the day of the measurement, 2nd is the month, 3rd is the year, 4th is the hour, 5th is the minutes, 6th is the seconds, 7th is the wind velocity and 8th is the wind direction. The user should also specify the units of measurements of the wind velocity (in the panel "Specify the units of wind velocity") and the height of the gauge above sea level (in the panel "Vertical distance of the gauge") (Figure 3).

In the panel "General analysis" the user can select one of the 8 main direction-sectors and calculate the wind characteristics (by pushing the button "Calculate wind characteristics") which are the wind frequency, mean wind velocity and mean wind duration for each Beaufort number. The results are shown in the table below the button "Calculate wind characteristics" (Figure 3). The user can save the resulted table by giving a filename in the edit box "Enter filename" and by pushing the button "Save the resulted table" (Figure 3). The user can also plot the windrose for the selected direction-sector, by pushing the button "Plot windrose" inside the panel "Create windrose" (Figure 3). He/she has the option to give a title to the windrose by entering the desired title in the edit box "Title" before pushing the button "Plot windrose".

The option of a specified analysis is also given. The user can give a specific range of wind directions (in the panel "Insert a range of wind directions") and a specific range of wind velocities (in the panel "Insert a range of wind velocities") and calculate the wind frequency, mean wind velocity and mean wind duration by pushing the button "Calculate wind characteristics" in the panel "Specified analysis". The results are shown in the table below (Figure 3). The user can save the resulted table by giving a filename in the edit box "Enter filename" and by pushing the button "Save the resulted table" (Figure 3). The user can also plot the windrose for the specified range of wind directions, by pushing the button "Plot windrose" inside the panel "Create windrose" (inside the panel "Specified analysis") (Figure 3). He/she has the option to give a title to the windrose by entering the desired title in the edit box "Title" before pushing the button "Plot windrose".

3.2 Manual χρήσης λογισμικού (GUI) εκτίμησης κυμάτων από ανεμολογικά δεδομένα

Wave Estimation GUI

Manual

Introduction

Wind and waves are closely related. When wind blows over water, friction pulls the surface water along in the same direction. The water gains energy from the wind and waves are formed because the water is being compressed by the wind. There are three types of wind wave growth:

Fully developed sea: When the wind has imparted its maximum energy to the waves, the sea is said to be fully developed. In brief, the waves cannot grow any higher than the maximum value for that wind speed.

Fetch limited sea: When the fetch length is too short, the wind is not in contact with the waves over a distance sufficient to impart the maximum energy to the waves. The ranges of frequencies and wave heights are therefore limited, and the wave heights are less than those of a fully developed sea. The process of wave generation is cut off before the maximum energy has been imparted to the waves and the fetch is in a steady state. This leads to the conclusion that for every wind speed, a minimum fetch distance is required for the waves to become fully developed, and that if this minimum fetch requirement is not met, the sea is fetch limited.

Duration limited sea: When the wind has not been in contact with the waves long enough, it has had insufficient time to impart the maximum energy to the waves, and the growth of the frequency range and wave heights ceases before the fully developed state of the sea has commenced. Such a situation is known as a duration time limited sea. This leads to the conclusion that for every wind speed, a minimum duration time is required for the waves to become fully developed; and that if this minimum duration time requirement is not met, the sea is duration time limited.

The JONSWAP-PM method

The JONSWAP-PM method estimates significant wave height and period (Hs, Tp) in open sea, from wind velocity, wind duration and effective fetch length, using the JONSWAP and \square the Pierson-Moskowitz spectrums. To apply this wave prediction procedure, first the \square adjusted wind speed U_A must be determined given by

$$U_A = 0.71 * U_{10}^{1.23}$$
[1]

where U_A and U_{10} are both in meters per second.

The JONSWAP spectrum is based on the fetch-limited conditions. Then the significant height (H_s) and peak period (T_p) can be calculated from:

$$\frac{gH_s}{U_A^2} = 0.0016 \left(\frac{gF_{eff}}{U_A^2}\right)^{0.5}$$
[2]

$$\frac{gT_{p}}{U_{A}} = 0.286 \left(\frac{gF_{eff}}{U_{A}^{2}}\right)^{0.33}$$
[3]

if this inequation is valid:

$$\frac{gt_D}{U_A} > 68.8 \left(\frac{gF_{eff}}{U_A^2}\right)^{0.66}$$

The values determined from Eqs. (2) and (3) use only the wind speed and fetch and are thus only for the fetch-limited condition. Limiting wind duration would be calculated from:

$$\frac{gt_D}{U_A} = 68.8 \left(\frac{gF_{eff}}{U_A^2}\right)^{0.66}$$
[4]

were t_D is the wind duration in seconds. If the actual duration is greater than the duration calculated from Eq. (4) the wind generation process is fetch limited and the results from Eqs. (2) and (3) are the predicted significant height and peak period. If the actual duration is less, the process is duration limited. Using the actual duration, a new effective fetch is calculated from Eq. (4) and, with this new fetch value, the significant height and peak period can be calculated from Eqs. (2) and (3). If the process is not limited (Fully developed sea) then:

$$\frac{gF_{eff}}{U_A^2} \ge 22.8 \cdot 10^3$$

[5]

ΔεΣΜΟΙ

ΑΝΑΠΤΥΞΗΣ

In this case the Pierson-Moskowitz spectrum is used and significant height and peak period are calculated from:

$$\frac{gH_s}{U_A^2} = 0.243$$
 [6]

$$\frac{gT_p}{U_A} = 8.13$$
[7]

The significant wave period T_s is calculated from:

$$T_s = 0.9T_p$$
[8]

Effective wave can be calculated from (Borah and Balloffet, 1985):

$$T_e = \frac{\sum f_i T_i}{\sum f_i}$$
[9]

$$H_{e}^{2}T_{e} = \frac{\sum H_{i}^{2}f_{i}T_{i}}{\sum f_{i}}$$
[10]

This GUI can estimate significant wave height and period (Hs, Tp) in open sea, from wind velocity and wind fetch, using JONSWAP method. This GUI is consisted of the exe file Wave_forecasting.

How to use the program

Once MCR is installed the platform can run by simply double-clicking on the Wave_forecasting.exe, then the following screen appears (it might take some time to open):

ΔΕΣΜΟΙ ΑΝΑΠΤΥΞΗΣ

Σελίδα **36** από **52**

Figure 1. The figure of the Wave forecasting GUI.

In the panel named 'Insert data' (Figure 1), the user enters information on wind fetch (the length of water over which a given wind has blown) and the z vertical distance of the wind gauge above sea level. The user can calculate significant and effective wave characteristics. In order to calculate significant wave the user should also enter information about the wind velocity measured at z distance from the wind blow and the wind duration. Once all parameters are determined, the user can calculate significant wave height and period by pushing the button 'Calculate Hs, Ts', then the results appear in the edit boxes 'Significant wave height' and 'Significant wave period' inside the panel named 'Significant wave' (Figure 1 and 2). The type of wind wave growth is also shown in the text field below the edit boxes inside the panel 'Significant wave' (Figure 2).

		Sgnificant wave	
Wind velocity	11 (units in m/sec)	Wind duration	36000 (units in sec)
Significant Wave H	eight	Fetch limited	Significant Wave Period
(units in m)		Save results	(units in sec)

Figure 2. An example of significant wave results.

Save as 💷 🔍 📉
Give a filename
OK Cancel

Figure 3. The window that opens in order to give a filename and save the results.

The user can save the results by pushing the button 'Save results' then a new window opens where he/she can give a filename (Figure 3). The input and output values are saved as an excel file (Table 1) in the output directory given by the user.

Table 1. An example of the output file with the resulted characteristics of significant wave.

INPUTS

Fetch (m)	90000	
Vertical distance of the gauge (m)	15	
Wind velocity (m/sec)	11	
Wind duration (sec)	36000	
RESULT	S	
Significant wave height (m)	1,93	
Significant wave period (sec)	5,86	
Situation of the sea	Fetch limited	

In order to calculate effective wave the user should also browse a txt file (by pushing the button "Browse input file" in the panel "Effective wave") that will include information about

the wind frequency (2nd column), the mean wind velocity (3rd column) and the wind duration (4th column) per Beaufort (1st column). This kind of file might be obtained by the "Wind data analysis" GUI. Then effective wave can calculated by pushing the button "Calculate Effective Wave Characteristics". The results appear in the edit boxes 'Effective Wave Height' and 'Effective Wave Period' and the table next to them is filed by the frequency, the wave height and period per Beaufort category resulted by the application of JONSWAP method for every Beaufort category (Figure 4). The table and the effective wave characteristics can be saved in an excel file by pushing the button "Save results", inside the panel "Effective Wave" (Figure 1 and 4).

Figure 4. An example of effective wave results.

References

- Borah D.K. and Balloffet A., 1985, Beach evolution caused by littoral drift barrier, *J. of Waterway, Port, Coastal and Ocean Eng.*, ASCE, 111(4): 645-660.
- Hasselmann, K., Ross, D.B., Muller, P., Sell, W., 1976, A Parametric Wave Prediction Model, *Journal of Physical Oceanography* 6, pp. 200-228.
- Κουτίτας, Χ.Γ., 1994, Εισαγωγή στην Παράκτια Τεχνική και τα Λιμενικά Έργα, Θεσσαλονίκη, Εκδόσεις Ζήτη.

Komar, P. D., 1998, Beach Processes and Sedimentation, Prentice Hall, N.J., USA, pp. 544.

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **39** από **52**

3.3 Manual χρήσης λογισμικού (GUI) εκτίμησης διάβρωσης και πλημμύρας (Στατικά μοντέλα)

Beach retreat estimator GUI (Static models)

Manual

Introduction

The users of this GUI can estimate beach retreat according to static models (Edelman's, Bruun's and Dean's) for particular environmental conditions (beach slope/bathymetry, wave height, and wave period) and sea level rise scenarios of their interest. The users can select all or some of these models to create an ensemble and then they can obtain the mean values (by selected models) of beach retreat and the polynomial equation that fits in the mean values of the retreat. This GUI is consisted of the exe files BRE_2a (for linear profiles) and BRE_2b (for natural profiles).

How to use the program

Once MCR is installed the user can run the platform by simply double-clicking on the BRE_2a.exe (for linear profiles) or BRE_2b (for natural profiles) (it might take some time to open).

In the panel named 'Insert data' (Figure 1), the user enters information on beach slope, wave height and wave period. He/she can also insert sea level rise scenarios pushing the button 'Insert sea level rise scenarios'. Then an input dialog box appears with default values been already inserted which the user can use, or he/she can erase them and enter new values. The input dialog box with default values is shown in Figure 3. In the BRE_2b platform for natural profiles, there is a 'Browse...' button instead of the 'Beach slope' edit box (Figure 2). The push of the 'Browse...' button opens a new window through which the user can search in his/her computer for the txt profile file. This file should have two columns, the first column should be the cross-shore distance in meters and the second should be the elevation also in meters. This kind of file might be obtained by the EOF GUI.

🛃 BF	Restimator2a					
	BEACH RETREAT ESTIMATOR (STATIC MODELS)					
	Insert data					
	Beach slope	Wave height	Wave pe	eriod	[
					Insert sea level rise	scenarios
	(e.g. 10 for slope 1/10)	(units in m)	(units in	sec)		
	Run models					
	Edelma	IN	Brunn	_	Dean	
	Run		Run		Run	
	View results View results View results					
	first column: s	first column: sea level rise scenarios in m, second column: beach retreat in m			ım	
	Select models to View equation create an ensemble unclick and click again for new disk again for new specific sea level risk		ılate beach retrea ïc sea level rise s	at for a scenario		
	Edolman			Sea lev	vel rise:	(units in m)
	Bruun				Calculate	
	🗆 Dean			Beach	retreat :	(units in m)
		Plot r	esults			
		Copyright 2011 by UNE	P and University of A	egean (l. Mor	iioudi and A.F. Velegrakis)	

Figure 1. The figure of the BRE_2a GUI (for linear profiles).

E	SEACH RETRE (STATIC	MODELS)	ATOR		
Insert data Beach profile file Browse (1st column: cross-shore distance (m) 2nd column: elevetion (m))	Wave height (units in m)	Wave period	Insert sea leve	el rise scenarios	
Run models Edelman Run View results	B F View	runn Run v results	Dean Run View res	ults reat in m	
Select models to create an ensemble Edelman Bruun Dean	View equation	n Calc speci Sea le Beact	ulate beach i fic sea level i vel rise: Calcu	retreat for a rise scenario (units in m) late (units in m)	
© Copyri	Plot results ght 2011 by UNEP and Unive	ersity of Aegean (I. Me	onioudi and A.F. Velegra	ikis)	

Figure 2. The figure of the BRE_2b GUI (for natural profiles).

Figure 3. Input dialog box with default sea level rise scenarios.

Once all parameters are determined, the user can run the models by using the buttons 'Run' inside the panel named 'Run models' (Figure 1, 2). The user has the option to view beach retreat estimations made by each model individually by pushing the button 'View results' below the pushbutton 'Run'. When the 'View results' button is pressed, a message box opens with a table consisted by 2 columns. The first column is the sea level rise scenarios (in m) and the second is the beach retreat estimations (in m) made by the model. An example of this message box is shown in Figure 4. The user can select models to create an ensemble, by clicking in the corresponding checkboxes (Figure 5).

🛃 Edelman 🛛	_ 🗆 🔀
0.038 1.15 0.05 1.52 0.1 3.03 0.15 4.55 0.22 6.67 0.3 9.1 0.4 12.13 0.5 15.17 0.75 22.77 1 30.37 1.3 39.5 1.5 45.6 2 60.86 3 91.46	

Figure 4. An example of message box with results of the Edelman model.

Once the models comprising the ensemble are selected, the user use the button 'View equation'; then, a polynomial equation describing beach retreat estimations appears in the text fields below the button. An example is shown in Figure 5. This equation have the form: $s = p_1 a^2 + p_2 a + p_3$, where s: is the beach retreat, p_1 , p_2 and p_3 : are the polynomial coefficients and *a*: is the sea level rise. The value of R² is also given in the text field.

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

ΔεΣΜΟΙ

ΑΝΑΠΤΥΞΗΣ

Figure 5. An example of the resulted equation.

With the press of the pushbutton 'Plot results', the polynomial equations of all selected models are calculated and plotted together with the polynomial equation that fits in the mean values of beach retreat. An example of a plot result is depicted in Figure 6.

Figure 6. An example of a plotting result.

From the equation resulted by the program, the range of beach retreat due to a specific value of sea level rise can be easily calculated. This program gives the user the possibility to calculate the range of retreat only with a click on the pushbutton calculate inside the panel 'Calculate the retreat for a specific sea level rise scenario'. An example is given in Figure 7.

ΑΝΑΠΤ

Calculate beach retreat for a				
specific sea level rise scenario				
Sea level rise:	0.5	(units in m)		
	Calculate			
Beach retreat :	14.78	(units in m)		

Figure 7. An example of beach retreat calculation for a specific sea level rise scenario.

The output files of this platform are:

(Output files are saved in the same folder with the platform's exe file, replacing pre-existing files)

extpr.txt (only for natural profiles): is the extended profile of the initial profile given by the user. First column is cross-shore distance (in m) and second column is elevation (in m).

sEdel.txt: is a one column matrix with beach retreat projections made by Edelman model.

sBruun.txt: is a one column matrix with beach retreat projections made by Bruun model.

sDean.txt: is a one column matrix with beach retreat projections made by Dean model.

slrs.txt: is a one column matrix that contains the sea level scenarios entered by the user.

total_table.txt: is a table with 5 rows and columns equal with the number of the sea level rise scenarios entered by the user. Contains the beach retreat projections made by Edelman (1st row), Bruun (2nd row) and Dean (3rd row). Each column corresponds to a different sea level rise scenario.

path.txt: contains the path and the filename of the imported profile.

Beach retreat estimations.tiff: is the plotting figure of the polynomial equations of all selected models together with the polynomial equation that fits in the mean values of beach retreat projections of the models selected by the user.

References

- Bruun, P., 1962, Sea level rise as a cause of shore erosion, *Journal of Waterway, Harbors Division. ASCE* 88:117-130.
- Bruun, P., 1983, Review of conditions for uses of the Bruun rule of erosion, *Coastal Engineering* **7**(1):77-89.
- Bruun, P., 1988, The Bruun Rule of erosion by sea level rise: A discussion on large-scale two- and three-dimensional usages, *Journal of Coastal Research* **4**(4):622-648.
- Dean, R. G., 1991, Equilibrium beach profiles: characteristics and applications, *J. Coastal Research* **7**(1):53–84.
- Edelman, T., 1972, Dune erosion during storm conditions, in: *Proceedings of the 13th International Conference on Coastal Engineering* ASCE, pp. 1305-1312.

3.4 Manual χρήσης λογισμικού (GUI) εκτίμησης διάβρωσης και πλημμύρας (Δυναμικά μοντέλα)

Beach retreat estimator GUI (Dynamic models)

Manual

Introduction

The users of this GUI can estimate beach retreat according to dynamic models (Leont'yev and SBEACH) for particular environmental conditions (beach slope, wave height, wave period, sediment size) and sea level rise scenarios of their interest. The models should run first without a sea level rise scenario to be considered. In this way the profile evolution caused only by environmental forcing is estimated. Then the new profile is used as an initial profile for the assessment of sea level rise effects. This GUI is consisted of the exe files BRE_3a (for linear profiles) and BRE_3b (for natural profiles).

How to use the program

Once MCR is installed the user can run the platform by simply double-clicking on the BRE_3a.exe (for linear profiles) or BRE_3b (for natural profiles) (it might take some time to open). The following exe files compiled in FORTRAN should be in the same folder with platform's exe file.

Exe files compiled in FORTRAN: **leo_first run:** Leont'yev run without sea level rise **leo_slr run:** Leont'yev run with sea level rise **sbeach_first run:** SBEACH run without sea level rise **sbeach_slr run:** SBEACH run with sea level rise

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Σελίδα **46** από **52**

BRE_3a	
BEACH RETREAT ESTIMAT (DYNAMIC MODELS)	OR
Browse output directory Insert environmental conditions	© Copyright 2011 by UNEP and University of Aegean (I. Monioudi, A.F. Velegrakis) Models used:
Beach slope Wave height Wave period Wave angle Sediment size (e.g. 10 for slope 1/10) (units in m) (units in sec) (units in degrees) (units in mm)	(i) Leontyev (batiges and Janssen, 1976; Leontyev, 1996) modified by: Th. Karambas, C. Kouttas, M. Vousdoukas, I. Monioudi and A.F. Velegrakis (ii) SBEACH (Larson and Kraus, 1989) modified by: Th. Karambas and C. Kouttas
Beach profile evolution without sea level rise Insert simulation time Run Leont'yev	ulation time Run SBEACH
Calculate coastline migration Retreat (-) or Accretion (+) Retreat (-) or Accretion (+) Calculate coa Retreat (-) or Accretion (+)	Astline migration ccretion (+) View the video
(units in m) (units in m)	m)
Sea level rise: (units in m) Sea level	el rise: (units in m)
Insert simulation time Run Leont'yev Insert simulat	ion time Run SBEACH
View the video Calculate coastline migration View the video	Calculate coastline migration
Plot initial and final profile (units in m)	d final profile (units in m)

Figure 1. The figure of the BRE_3a GUI (for linear profiles).

BEACH RETREAT ESTIMAT (DYNAMIC MODELS)	OR
Browse output directory Insert environmental conditions Beach profile file Wave height Wave period Wave angle Sediment size Browse (st column: cross-shore distance (m), 2nd column: (units in m) (units in sec) (units in degrees) (units in mm) elevetion (m))	Copyright 2011 by UNEP and University of Aegean (I. Monioudi, A.F. Velegrakis) Models used: (i) Leonfyev (Battjes and Janssen, 1978; Leonfyev, 1996) modified by: Th. Karambas, C. Kouttas, M. Vousdoukas, I. Monioudi and A.F. Velegrakis (ii) SBEACH (Larson and Kraus, 1989) modified by: Th. Karambas and C. Kouttas
Insert simulation time Run Leont'yev Insert simulation Calculate coastline migration View the video Calculate coastline coastline Retreat (-) or Accretion (+) View the video Retreat (-) or Accretion (+) (units in m) Plot initial and final profile (units in m)	ulation time Run SBEACH astline migration ccretion (+) View the video Plot initial and final profile
Beach profile evolution with sea level rise Sea level rise: (units in m) Sea level	el rise: (units in m)
Insert simulation time Run Leont'yev Insert simulation View the video Calculate coastline migration View the video Beach retreat: Plot initial and final profile Plot initial and	ion time Run SBEACH deo Calculate coastline migration Beach retreat: d final profile

Figure 2. The figure of the BRE_3b GUI (for natural profiles).

In the panel named 'Insert environmental conditions', the user enters information on beach slope, wave height, wave period, wave angle and sediment size (Figure 1). In the BRE_3b=HZ

platform for natural profiles, there is a 'Browse...' button instead of the 'Beach slope' edit box (Figure 2). The push of the 'Browse...' button opens a new window through which the user can search in his/her computer for the txt profile file. This file should have two columns, the first column should be the cross-shore distance in meters and the second should be the elevation also in meters. This kind of file might be obtained by the EOF platform (see section 6).

Once all parameters are determined, the user can enter the simulation time of his/her desire by pushing the button 'Insert simulation time', then he/she can run the models by using the buttons 'Run Leont'yev' or 'Run SBEACH' inside the panel named 'Beach profile evolution without sea level rise' (Figure 1,2). A waitbar appears with the title 'Please wait...' (Figure 3), the user should wait (or he/she can cancel the process by pushing the button "cancel" inside the waitbar window) for the process to be completed, then a message informs the user that the model have ran successfully. During the process, instability of the model may cause the process to stop, then a warning message appears, informing the user that the model stopped running and how many calculations have been completed successfully. The user can calculate coastline migration (Retreat (-) or Accretion (+)) by pushing the button 'Calculate coastline migration', then the result appears in the edit box 'Retreat (-) or Accretion (+)'. The user has also the options to view the video of the profile evolution and to plot initial and final profile (Figure 4) by pushing the buttons 'View the video' and 'Plot initial and final profile 'respectively.

Figure 3. The waitbar that appears during the model's run.

Once the resulted profile by the environmental forcing is been estimated, sea level rise effects can be also assessed. The user enters the sea level rise scenario of his/her interest (in the edit box 'Sea level rise'), the desired simulation time (by pushing the button 'Insert simulation time') and then he/she can run the models by using the buttons 'Run Leont'yev' or 'Run SBEACH' inside the panel named 'Beach profile evolution with sea level rise' (Figure 1, 2). Once the model process has been completed successfully the user has the options (C) to calculate the retreat of the coastline, to view the video of profile evolution and to plot initial = []

and final profiles by pushing the buttons 'Calculate coastline migration', 'View the video' and 'Plot initial and final profile' respectively.

Figure 4. An example of initial and final profile plotting.

Figure 5. An example frame of profile evolution video.

The output files of this platform are:

extpr.txt (only for natural profiles): is the extended profile of the initial profile given by the user. First column is cross-shore distance (in m) and second column is elevation (in m).

Output files from Leont'yev runs without sea level rise:

inputs_leo_fr.txt: file with user's input data

e.g. [10 2 6 0.8 220 45]

Where 10 the beach slope (for natural profiles, beach slope is estimated by the mean slope of the swash zone), 2 wave height (in m), 6 wave period (sec), 0.8 grain size (in mm) 220 the number of beach profile points defined by the bed slope (if the profile starts at 20 m water depth and reaches to 10 m elevation above the sea level) and 45 is the wave angle.

in_bathy_leo.txt: the initial profile.

time_leo_fr.txt: simulation time set by the user.

bed_leo_fr.txt: the final model output with the first column showing the x axis, the second column the final profile and the third the profile of the previous run.

all_bathy_leo_fr.txt: each column contains the topographic elevation after each iteration For example, for time 40 (40*200=8000sec) the file contains 40 columns.

situation_leo_fr.txt: the file contains information on the condition of the run. For example, the first value shows if the model ran correctly (value 0) or stopped (value 1). The second value shows if the model gives NaN values for the profile, the 3rd value shows if the model gives zero values for the profile, the 4th value shows if the model gives ****** values for the profile and the 5th value shows the iteration that showed instability and stopped. If the model run successfully to the end for e.g. the default (40) time then the values will be:

Leont_fr.tiff: figure file with the initial and final profile

leont_fr.avi: video file.

Output files from Leont'yev runs with sea level rise:

inputs_leo_slr.txt: file with user's input data

e.g. [10 2 6 0.8 220 45]

Where 10 the beach slope (for natural profiles, beach slope is estimated by the mean slope of the swash zone), 2 wave height (in m), 6 wave period (sec), 0.8 grain size (in mm) 220 the number of beach profile points defined by the bed slope (if the profile starts at 20 m water depth and reaches to 10 m elevation above the sea level) and 45 is the wave angle.

slr_scenario_leo.txt: file containing one value (user input for sea level rise).

time_leo_slr.txt: simulation time set by the user.

bed_leo_sir.txt: the final model output with the first column showing the x axis, the second column the final profile and the third the profile of the previous run.

all_bathy_leo_slr.txt: each column contains the topographic elevation after each iteration For example, for time 40(40*200=8000sec) the file contains 40 columns.

situation_leo_slr.txt: the file contains information on the condition of the run. For example, the first value shows if the model ran correctly (value 0) or stopped (value 1). The second value shows if the model gives NaN values for the profile, the 3rd value shows if the model______

gives zero values for the profile, the 4th value shows if the model gives ***** values for the profile and the 5th value shows the iteration that showed instability and stopped.

If the 20ⁿ time the model stopped and gave NaN values, then 'Warning' appears ('The model stopped running, it have run 19 times') and the values on the table will be:

Leont_slr.tiff. figure file with the initial and final profile

leont_slr.avi: video file.

Output files from SBEACH runs without sea level rise:

inputs_SB_fr.txt: file with user's input data

e.g. [10 2 6 0.8 220 45]

Where 10 the beach slope (for natural profiles, beach slope is estimated by the mean slope of the swash zone), 2 wave height (in m), 6 wave period (sec), 0.8 grain size (in mm) 220 the number of beach profile points defined by the bed slope (if the profile starts at 20 m water depth and reaches to 10 m elevation above the sea level) and 45 is the wave angle.

in_bathy_SB.txt: the initial profile.

time_SB_fr.txt: simulation time set by the user.

bed_SB_fr.txt: the final model output with the first column showing the x axis, the second column the final profile and the third the profile of the previous run.

all_bathy_SB_fr.txt: each column contains the topographic elevation after each iteration For example, for time 40(40*200=8000sec) the file contains 40 columns.

situation_SB_fr.txt: the file contains information on the condition of the run. For example, the first value shows if the model ran correctly (value 0) or stopped (value 1). The second value shows if the model gives NaN values for the profile, the 3rd value shows if the model gives zero values for the profile, the 4th value shows if the model gives ****** values for the profile and the 5th value shows the iteration that showed instability and stopped.

SBEACH_fr.tiff: figure file with the initial and final profile

sbeach_fr.avi: video file.

Output files from SBEACH runs with sea level rise:

inputs_SB_slr.txt: file with user's input data

e.g. [10 2 6 0.8 220 45]

ΔΕΣΜΟΙ **ΑΝΑΠΤΥΞΗΣ**

Πανεπιστήμιο Αιγαίου, Παραδοτέο 4.1.4

Where 10 the beach slope (for natural profiles, beach slope is estimated by the mean slope of the swash zone), 2 wave height (in m), 6 wave period (sec), 0.8 grain size (in mm) 220 the number of beach profile points defined by the bed slope (if the profile starts at 20 m water depth and reaches to 10 m elevation above the sea level) and 45 is the wave angle.

slr_scenario_SB.txt: file containing one value (user input for sea level rise).

time_SB_slr.txt: simulation time set by the user.

bed_SB_slr.txt: the final model output with the first column showing the x axis, the second column the final profile and the third the profile of the previous run.

all_bathy_SB_slr.txt: each column contains the topographic elevation after each iteration. For example, for time 40(40*200=8000sec) the file contains 40 columns

situation_SB_slr.txt: the file contains information on the condition of the run. For example, the first value shows if the model ran correctly (value 0) or stopped (value 1). The second value shows if the model gives NaN values for the profile, the 3rd value shows if the model gives zero values for the profile , the 4th value shows if the model gives ****** values for the profile and the 5th value shows the iteration that showed instability and stopped. If the model run successfully to the end for e.g. the default (40) time then the values will be:

If the 20ⁿ time the model stopped and gave NaN values, then 'Warning' appears ('The model stopped running, it have run 19 times') and the values on the table will be:

SBEACH_slr.tiff. figure file with the initial and final profile

sbeach_slr.avi: video file

References

- Larson, M., and Kraus, N. C., 1989, SBEACH: numerical model for simulating storm-induced beach change; report 1: empirical foundation and model development, *Technical Report US Army Coastal Engineering Research Center* **89-9**.
- Leont'yev, I. O., 1996, Numerical modelling of beach erosion during storm event, *Coastal* Engineering **29**(1-2):187-200.

Leont'yev, I. O., 1997, Short-term shoreline changes due to cross-shore structures: a one-line numerical model, *Coastal Engineering* **31**(1-4):59-75.